Query

Active Filters

  • (-) Empa Laboratories = 312 Building Energy Materials and Components
  • (-) Empa Laboratories = 302 Cellulose & Wood Materials
Search Results 1 - 20 of 26
Select Page
Enhancing interface connectivity for multifunctional magnetic carbon aerogels: an in situ growth strategy of metal-organic frameworks on cellulose nanofibrils
Qiao, J., Song, Q., Zhang, X., Zhao, S., Liu, J., Nyström, G., & Zeng, Z. (2024). Enhancing interface connectivity for multifunctional magnetic carbon aerogels: an in situ growth strategy of metal-organic frameworks on cellulose nanofibrils. Advanced Science. https://doi.org/10.1002/advs.202400403
Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties
Sivaraman, D., Nagel, Y., Siqueira, G., Chansoria, P., Avaro, J., Neels, A., … Zhao, S. (2024). Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties. Advanced Science. https://doi.org/10.1002/advs.202307921
Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels
Nagel, Y., Sivaraman, D., Neels, A., Zimmermann, T., Zhao, S., Siqueira, G., & Nyström, G. (2023). Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels. Small Structures, 4(12), 2300073 (9 pp.). https://doi.org/10.1002/sstr.202300073
Nanocellulose aerogels as 3D amyloid templates
Sinha, A., Kummer, N., Wu, T., De France, K. J., Pinotsi, D., Thoma, J. L., … Nyström, G. (2023). Nanocellulose aerogels as 3D amyloid templates. Nanoscale, 15, 17785-17792. https://doi.org/10.1039/d3nr02109b
3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management
Wu, T., Ganobjak, M., Siqueira, G., Zeng, Z., Li, M., Filimonova, E., … Zhao, S. (2023). 3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management. Advanced Materials Technologies, 8(14), 2202155 (9 pp.). https://doi.org/10.1002/admt.202202155
Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal
Drdova, S., Zhao, S., Giannakou, M., Sivaraman, D., Guerrero-Alburquerque, N., Bonnin, A., … Wang, J. (2022). Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal. Advanced Science, 9(11), 2105819 (10 pp.). https://doi.org/10.1002/advs.202105819
Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering
Lutz-Bueno, V., Diaz, A., Wu, T., Nyström, G., Geiger, T., & Antonini, C. (2022). Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering. Biomacromolecules, 23(3), 676-686. https://doi.org/10.1021/acs.biomac.1c00521
Biohybrid nanocellulose-lysozyme amyloid aerogels via electrostatic complexation
Severini, L., De France, K. J., Sivaraman, D., Kummer, N., & Nyström, G. (2022). Biohybrid nanocellulose-lysozyme amyloid aerogels via electrostatic complexation. ACS Omega, 7(1), 578-586. https://doi.org/10.1021/acsomega.1c05069
Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment
Sivaraman, D., Siqueira, G., Maurya, A. K., Zhao, S., Koebel, M. M., Nyström, G., … Malfait, W. J. (2022). Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment. Carbohydrate Polymers, 292, 119675 (11 pp.). https://doi.org/10.1016/j.carbpol.2022.119675
Porous and ultra-flexible crosslinked MXene/Polyimide composites for multifunctional electromagnetic interference shielding
Zeng, Z. H., Wu, N., Wei, J. J., Yang, Y. F., Wu, T. T., Li, B., … Zhao, S. Y. (2022). Porous and ultra-flexible crosslinked MXene/Polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Letters, 14(1), 59 (16 pp.). https://doi.org/10.1007/s40820-022-00800-0
Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing
Zeng, Z., Wu, N., Yang, W., Xu, H., Liao, Y., Li, C., … Lu, X. (2022). Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small, 18(24), 2202047 (11 pp.). https://doi.org/10.1002/smll.202202047
Dual-porous cellulose nanofibril aerogels <em>via</em> modular drying and cross-linking
Wu, T., Zeng, Z., Siqueira, G., De France, K., Sivaraman, D., Schreiner, C., … Nyström, G. (2020). Dual-porous cellulose nanofibril aerogels via modular drying and cross-linking. Nanoscale, 12(13), 7383-7394. https://doi.org/10.1039/d0nr00860e
Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding
Zeng, Z., Jiang, F., Yue, Y., Han, D., Lin, L., Zhao, S., … Wang, J. (2020). Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Advanced Materials, 32(19), 1908496 (7 pp.). https://doi.org/10.1002/adma.201908496
Polymer-assisted fabrication of silver nanowire cellular monoliths: toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials
Zeng, Z., Li, W., Wu, N., Zhao, S., & Lu, X. (2020). Polymer-assisted fabrication of silver nanowire cellular monoliths: toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials. ACS Applied Materials and Interfaces, 12(34), 38584-38592. https://doi.org/10.1021/acsami.0c10492
Additive manufacturing of silica aerogels
Zhao, S., Siqueira, G., Drdova, S., Norris, D., Ubert, C., Bonnin, A., … Malfait, W. J. (2020). Additive manufacturing of silica aerogels. Nature, 584(7821), 387-392. https://doi.org/10.1038/s41586-020-2594-0
Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments
Orsolini, P., Antonini, C., Stojanovic, A., Malfait, W. J., Caseri, W. R., & Zimmermann, T. (2018). Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments. Cellulose, 25(2), 1127-1146. https://doi.org/10.1007/s10570-017-1636-8
Biopolymer aerogels and foams: chemistry, properties, and applications
Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer aerogels and foams: chemistry, properties, and applications. Angewandte Chemie International Edition, 57(26), 7580-7608. https://doi.org/10.1002/anie.201709014
Biopolymer-Aerogele und -Schäume: Chemie, Eigenschaften und Anwendungen
Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer-Aerogele und -Schäume: Chemie, Eigenschaften und Anwendungen. Angewandte Chemie, 130(26), 7704-7733. https://doi.org/10.1002/ange.201709014
Carbon dots and fluorescein: the ideal FRET pair for the fabrication of a precise and fully reversible ammonia sensor
Hsu, C. P., Hejazi, Z., Armagan, E., Zhao, S., Schmid, M., Zhang, H., … Toncelli, C. (2017). Carbon dots and fluorescein: the ideal FRET pair for the fabrication of a precise and fully reversible ammonia sensor. In J. P. Viricelle, C. Pijolat, & M. Rieu (Eds.), Proceedings: Vol. 1. Proceedings of Eurosensors 2017 (p. 488 (4 pp.). https://doi.org/10.3390/proceedings1040488
Carbon dots and fluorescein: the ideal FRET pair for the fabrication of a precise and fully reversible ammonia sensor
Hsu, C. P., Hejazi, Z., Armagan, E., Zhao, S., Schmid, M., Zhang, H., … Toncelli, C. (2017). Carbon dots and fluorescein: the ideal FRET pair for the fabrication of a precise and fully reversible ammonia sensor. Sensors and Actuators B: Chemical, 253, 714-722. https://doi.org/10.1016/j.snb.2017.07.001