Query

  • (-) (Author:(Fasel) OR Co-Author:(Fasel))

Active Filters

  • (-) Empa Authors ≠ Di Giovannantonio, Marco
  • (-) Journal ≠ Journal of the American Chemical Society
  • (-) Empa Authors ≠ Pignedoli, Carlo A.
  • (-) Full Text = Open Access
  • (-) Journal ≠ Nanoscale
Search Results 1 - 20 of 63

Pages

  • RSS Feed
Select Page
A universal length-dependent vibrational mode in graphene nanoribbons
Overbeck, J., Borin Barin, G., Daniels, C., Perrin, M. L., Braun, O., Sun, Q., … Calame, M. (2019). A universal length-dependent vibrational mode in graphene nanoribbons. ACS Nano, 13, 13083-13091. https://doi.org/10.1021/acsnano.9b05817
Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy
Moos, G., Gahl, C., Fasel, R., Wolf, M., & Hertel, T. (2001). Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy. Physical Review Letters, 87(26), 267402 (4 pp.). https://doi.org/10.1103/PhysRevLett.87.267402
Binding and ordering of C<sub>60</sub> on Pd(110): Investigations at the local and mesoscopic scale
Weckesser, J., Cepek, C., Fasel, R., Barth, J. V., Baumberger, F., Greber, T., & Kern, K. (2001). Binding and ordering of C60 on Pd(110): Investigations at the local and mesoscopic scale. Journal of Chemical Physics, 115(19), 9001-9009. https://doi.org/10.1063/1.1410391
Bottom‐up fabrication and atomic‐scale characterization of triply‐linked, laterally π‐extended porphyrin nanotapes
Sun, Q., Mateo, L. M., Robles, R., Lorente, N., Ruffieux, P., Bottari, G., … Fasel, R. (2021). Bottom‐up fabrication and atomic‐scale characterization of triply‐linked, laterally π‐extended porphyrin nanotapes. Angewandte Chemie International Edition, 60(29), 16208-16214. https://doi.org/10.1002/anie.202105350
Building pentagons into graphenic structures by on-surface polymerization and aromatic cyclodehydrogenation of phenyl-substituted polycyclic aromatic hydrocarbons
Liu, J., Dienel, T., Liu, J., Groening, O., Cai, J., Feng, X., … Fasel, R. (2016). Building pentagons into graphenic structures by on-surface polymerization and aromatic cyclodehydrogenation of phenyl-substituted polycyclic aromatic hydrocarbons. Journal of Physical Chemistry C, 120(31), 17588-17593. https://doi.org/10.1021/acs.jpcc.6b05495
C<SUB>60</SUB> on strain-relief patterns of Ag/Pt (111): film orientation governed by template superstructure
Aït-Mansour, K., Ruffieux, P., Xiao, W., Gröning, P., Fasel, R., & Gröning, O. (2006). C60 on strain-relief patterns of Ag/Pt (111): film orientation governed by template superstructure. Physical Review B, 74(19), 195418 (8 pp.). https://doi.org/10.1103/PhysRevB.74.195418
Coexistence of one- and two-dimensional supramolecular assemblies of terephthalic acid on Pd(111) due to self-limiting deprotonation
Cañas-Ventura, M. E., Klappenberger, F., Clair, S., Pons, S., Kern, K., Brune, H., … Barth, J. V. (2006). Coexistence of one- and two-dimensional supramolecular assemblies of terephthalic acid on Pd(111) due to self-limiting deprotonation. Journal of Chemical Physics, 125(18), 184710 (8 pp.). https://doi.org/10.1063/1.2364478
Coexisting inequivalent orientations of C<sub>60</sub> on Ag(001)
Cepek, C., Fasel, R., Sancrotti, M., Greber, T., & Osterwalder, J. (2001). Coexisting inequivalent orientations of C60 on Ag(001). Physical Review B, 63(12), 125406 (5 pp.). https://doi.org/10.1103/PhysRevB.63.125406
Combinatorial design of molecular seeds for chirality-controlled synthesis of single-walled carbon nanotubes
Tomada, J., Dienel, T., Hampel, F., Fasel, R., & Amsharov, K. (2019). Combinatorial design of molecular seeds for chirality-controlled synthesis of single-walled carbon nanotubes. Nature Communications, 10(1), 3278 (10 pp.). https://doi.org/10.1038/s41467-019-11192-y
Contacting individual graphene nanoribbons using carbon nanotube electrodes
Zhang, J., Qian, L., Borin Barin, G., Daaoub, A. H. S., Chen, P., Müllen, K., … Perrin, M. L. (2023). Contacting individual graphene nanoribbons using carbon nanotube electrodes. Nature Electronics, 6, 572-581. https://doi.org/10.1038/s41928-023-00991-3
Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors
El Abbassi, M., Perrin, M. L., Borin Barin, G., Sangtarash, S., Overbeck, J., Braun, O., … Calame, M. (2020). Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors. ACS Nano, 14(5), 5754-5762. https://doi.org/10.1021/acsnano.0c00604
Determining the number of graphene nanoribbons in dual-gate field-effect transistors
Zhang, J., Borin Barin, G., Furrer, R., Du, C. Z., Wang, X. Y., Müllen, K., … Perrin, M. L. (2023). Determining the number of graphene nanoribbons in dual-gate field-effect transistors. Nano Letters, 23(18), 8474-8480. https://doi.org/10.1021/acs.nanolett.3c01931
Doping-induced reorientation of C<sub>60</sub> molecules on Ag(111)
Tamai, A., Seitsonen, A. P., Fasel, R., Shen, Z. X., Osterwalder, J., & Greber, T. (2005). Doping-induced reorientation of C60 molecules on Ag(111). Physical Review B, 72(8), 085421 (5 pp.). https://doi.org/10.1103/PhysRevB.72.085421
Double quantum dots in atomically-precise graphene nanoribbons
Zhang, J., Qian, L., Borin Barin, G., Chen, P., Müllen, K., Ruffieux, P., … Perrin, M. L. (2023). Double quantum dots in atomically-precise graphene nanoribbons. Materials for Quantum Technology, 3(3), 036201 (8 pp.). https://doi.org/10.1088/2633-4356/acfa57
Edge contacts to atomically precise graphene nanoribbons
Huang, W., Braun, O., Indolese, D. I., Borin Barin, G., Gandus, G., Stiefel, M., … Perrin, M. L. (2023). Edge contacts to atomically precise graphene nanoribbons. ACS Nano, 17, 18706-18715. https://doi.org/10.1021/acsnano.3c00782
Edge disorder in bottom-up zigzag graphene nanoribbons: implications for magnetism and quantum electronic transport
Pizzochero, M., Borin Barin, G., Čerņevičs, K., Wang, S., Ruffieux, P., Fasel, R., & Yazyev, O. V. (2021). Edge disorder in bottom-up zigzag graphene nanoribbons: implications for magnetism and quantum electronic transport. Journal of Physical Chemistry Letters, 12(19), 4692-4696. https://doi.org/10.1021/acs.jpclett.1c00921
Efficient photogeneration of nonacene on nanostructured graphene
Ayani, C. G., Pisarra, M., Urgel, J. I., Navarro, J. J., Díaz, C., Hayashi, H., … Vázquez de Parga, A. L. (2021). Efficient photogeneration of nonacene on nanostructured graphene. Nanoscale Horizons, 6(9), 744-750. https://doi.org/10.1039/D1NH00184A
Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)
Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., … Ruffieux, P. (2018). Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). Chemical Communications, 54(13), 1619-1622. https://doi.org/10.1039/C7CC08353J
Evolution of the Rashba spin-orbit-split Shockley state on Ag/Pt(111)
Bendounan, A., Aït-Mansour, K., Braun, J., Minár, J., Bornemann, S., Fasel, R., … Ebert, H. (2011). Evolution of the Rashba spin-orbit-split Shockley state on Ag/Pt(111). Physical Review B, 83(19), 195427 (7 pp.). https://doi.org/10.1103/PhysRevB.83.195427
Evolution of the topological energy band in graphene nanoribbons
Sun, Q., Yan, Y., Yao, X., Müllen, K., Narita, A., Fasel, R., & Ruffieux, P. (2021). Evolution of the topological energy band in graphene nanoribbons. Journal of Physical Chemistry Letters, 12(35), 8679-8684. https://doi.org/10.1021/acs.jpclett.1c02541
 

Pages