Query

  • (-) (Author:(Fasel) OR Co-Author:(Fasel))

Active Filters

  • (-) Keywords ≠ X-ray photoelectron diffraction
  • (-) Journal = ACS Nano
Search Results 1 - 12 of 12
  • RSS Feed
Select Page
Intraribbon heterojunction formation in ultranarrow graphene nanoribbons
Blankenburg, S., Cai, J., Ruffieux, P., Jaafar, R., Passerone, D., Feng, X., … Pignedoli, C. A. (2012). Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano, 6(3), 2020-2025. https://doi.org/10.1021/nn203129a
Complex interplay and hierarchy of interactions in two-dimensional supramolecular assemblies
Cañas-Ventura, M. E., Aït-Mansour, K., Ruffieux, P., Rieger, R., Müllen, K., Brune, H., & Fasel, R. (2011). Complex interplay and hierarchy of interactions in two-dimensional supramolecular assemblies. ACS Nano, 5(1), 457-469. https://doi.org/10.1021/nn102164g
On-surface growth dynamics of graphene nanoribbons: the role of halogen functionalization
Di Giovannantonio, M., Deniz, O., Urgel, J. I., Widmer, R., Dienel, T., Stolz, S., … Fasel, R. (2018). On-surface growth dynamics of graphene nanoribbons: the role of halogen functionalization. ACS Nano, 12(1), 74-81. https://doi.org/10.1021/acsnano.7b07077
Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors
El Abbassi, M., Perrin, M. L., Borin Barin, G., Sangtarash, S., Overbeck, J., Braun, O., … Calame, M. (2020). Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors. ACS Nano, 14(5), 5754-5762. https://doi.org/10.1021/acsnano.0c00604
Detachment dynamics of graphene nanoribbons on gold
Gigli, L., Kawai, S., Guerra, R., Manini, N., Pawlak, R., Feng, X., … Vanossi, A. (2019). Detachment dynamics of graphene nanoribbons on gold. ACS Nano, 13(1), 689-697. https://doi.org/10.1021/acsnano.8b07894
Edge contacts to atomically precise graphene nanoribbons
Huang, W., Braun, O., Indolese, D. I., Borin Barin, G., Gandus, G., Stiefel, M., … Perrin, M. L. (2023). Edge contacts to atomically precise graphene nanoribbons. ACS Nano, 17, 18706-18715. https://doi.org/10.1021/acsnano.3c00782
Tailoring bond topologies in open-shell graphene nanostructures
Mishra, S., Lohr, T. G., Pignedoli, C. A., Liu, J., Berger, R., Urgel, J. I., … Fasel, R. (2018). Tailoring bond topologies in open-shell graphene nanostructures. ACS Nano, 12(12), 11917-11927. https://doi.org/10.1021/acsnano.8b07225
A universal length-dependent vibrational mode in graphene nanoribbons
Overbeck, J., Borin Barin, G., Daniels, C., Perrin, M. L., Braun, O., Sun, Q., … Calame, M. (2019). A universal length-dependent vibrational mode in graphene nanoribbons. ACS Nano, 13, 13083-13091. https://doi.org/10.1021/acsnano.9b05817
Electronic structure of atomically precise graphene nanoribbons
Ruffieux, P., Cai, J., Plumb, N. C., Patthey, L., Prezzi, D., Ferretti, A., … Fasel, R. (2012). Electronic structure of atomically precise graphene nanoribbons. ACS Nano, 6(8), 6930-6935. https://doi.org/10.1021/nn3021376
On-surface synthesis of BN-substituted heteroaromatic networks
Sánchez-Sánchez, C., Brüller, S., Sachdev, H., Müllen, K., Krieg, M., Bettinger, H. F., … Ruffieux, P. (2015). On-surface synthesis of BN-substituted heteroaromatic networks. ACS Nano, 9(9), 9228-9235. https://doi.org/10.1021/acsnano.5b03895
Purely armchair or partially chiral: noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111)
Sánchez-Sánchez, C., Dienel, T., Deniz, O., Ruffieux, P., Berger, R., Feng, X., … Fasel, R. (2016). Purely armchair or partially chiral: noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111). ACS Nano, 10(8), 8006-8011. https://doi.org/10.1021/acsnano.6b04025
On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons
Talirz, L., Söde, H., Dumslaff, T., Wang, S., Sanchez-Valencia, J. R., Liu, J., … Ruffieux, P. (2017). On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano, 11(2), 1380-1388. https://doi.org/10.1021/acsnano.6b06405