Active Filters

  • (-) Empa Authors ≠ Elser, Miriam
  • (-) Journal = Advanced Engineering Materials
Search Results 1 - 20 of 77

Pages

  • RSS Feed
Select Page
Multi-scale microstructure characterization of solid oxide fuel cell assemblies with ultra small-angle X-ray scattering
Allen, A. J., Ilavsky, J., & Braun, A. (2009). Multi-scale microstructure characterization of solid oxide fuel cell assemblies with ultra small-angle X-ray scattering. Advanced Engineering Materials, 11(6), 495-501. https://doi.org/10.1002/adem.200800357
Plasma polymerization of rhodamine 6G thin films
Barranco, A., Bielmann, M., Widmer, R., & Groening, P. (2005). Plasma polymerization of rhodamine 6G thin films. Advanced Engineering Materials, 7(5), 396-400. https://doi.org/10.1002/adem.200500051
Corrosion of AZ91 in 1N NaCl and the mechanism of magnesium corrosion
Bender, S., Goellner, J., & Atrens, A. (2008). Corrosion of AZ91 in 1N NaCl and the mechanism of magnesium corrosion. Advanced Engineering Materials, 10(6), 583-587. https://doi.org/10.1002/adem.200800005
Mechanical anisotropy investigated in the complex SLM-processed Sc- and Zr-modified Al–Mg alloy microstructure
Best, J. P., Maeder, X., Michler, J., & Spierings, A. B. (2019). Mechanical anisotropy investigated in the complex SLM-processed Sc- and Zr-modified Al–Mg alloy microstructure. Advanced Engineering Materials, 21(3), 1801113 (6 pp.). https://doi.org/10.1002/adem.201801113
Formation of Al<sub>4</sub>Cu<sub>9</sub> on the 5 fold surface of icosahedral AlPdMn
Bielmann, M., Barranco, A., Ruffieux, P., Gröning, O., Fasel, R., Widmer, R., & Gröning, P. (2005). Formation of Al4Cu9 on the 5 fold surface of icosahedral AlPdMn. Advanced Engineering Materials, 7(5), 392-396. https://doi.org/10.1002/adem.200500050
Comparison of three different active filler metals used for brazing ceramic-to-ceramic and ceramic-to-metal
Bissig, V., Galli, M., & Janczak-Rusch, J. (2006). Comparison of three different active filler metals used for brazing ceramic-to-ceramic and ceramic-to-metal. Advanced Engineering Materials, 8(3), 191-196. https://doi.org/10.1002/adem.200500234
Effect of biomaterial surface morphologies on bone marrow cell performance
Bruinink, A., Kaiser, J. P., & Meyer, D. C. (2005). Effect of biomaterial surface morphologies on bone marrow cell performance. Advanced Engineering Materials, 7(5), 411-418. https://doi.org/10.1002/adem.200500065
Effect of pore morphology on deformation behaviors in porous Al by FEM simulations
Cho, Y. J., Lee, W. J., Park, S. K., & Park, Y. H. (2013). Effect of pore morphology on deformation behaviors in porous Al by FEM simulations. Advanced Engineering Materials, 15(3), 166-169. https://doi.org/10.1002/adem.201200145
Computing fibers: a novel fiber for intelligent fabrics?
Clemens, F., Wegmann, M., Graule, T., Mathewson, A., Healy, T., Donnelly, J., … Papadas, C. (2003). Computing fibers: a novel fiber for intelligent fabrics? Advanced Engineering Materials, 5(9), 682-687. https://doi.org/10.1002/adem.200300371
Size and constraining effects in lead-free solder joints
Cugnoni, J., Botsis, J., & Janczak-Rusch, J. (2006). Size and constraining effects in lead-free solder joints. Advanced Engineering Materials, 8(3), 184-191. https://doi.org/10.1002/adem.200400236
Influence of burner scale-up on characteristics of flame-synthesized titania and silica nanoparticles
Dittmann, R., Richter, J., Vital, A., Piazza, D., Aneziris, C., & Graule, T. (2005). Influence of burner scale-up on characteristics of flame-synthesized titania and silica nanoparticles. Advanced Engineering Materials, 7(5), 354-360. https://doi.org/10.1002/adem.200500090
A novel Fe-Mn-Si shape memory alloy with improved shape recovery properties by VC precipitation
Dong, Z., Klotz, U. E., Leinenbach, C., Bergamini, A., Czaderski, C., & Motavalli, M. (2009). A novel Fe-Mn-Si shape memory alloy with improved shape recovery properties by VC precipitation. Advanced Engineering Materials, 11(1-2), 40-44. https://doi.org/10.1002/adem.200800312
Study of liquid impact erosion in B2-NiTi and Ti<SUB>3</SUB>Al based intermetallic matrix composites on laser alloyed Ti-6Al-4V
Duraiselvam, M., Galun, R., Siegmann, S., Wesling, V., & Mordike, B. L. (2007). Study of liquid impact erosion in B2-NiTi and Ti3Al based intermetallic matrix composites on laser alloyed Ti-6Al-4V. Advanced Engineering Materials, 9(3), 171-176. https://doi.org/10.1002/adem.200600227
The role of binder content on microstructure and properties of a Cu-base active brazing filler metal for diamond and cBN
Elsener, H. R., Klotz, U. E., Khalid, F. A., Piazza, D., & Kiser, M. (2005). The role of binder content on microstructure and properties of a Cu-base active brazing filler metal for diamond and cBN. Advanced Engineering Materials, 7(5), 375-380. https://doi.org/10.1002/adem.200500042
An innovative selective laser melting process for hematite-doped aluminum oxide
Florio, K., Pfeiffer, S., Makowska, M., Casati, N., Verga, F., Graule, T., … Wegener, K. (2019). An innovative selective laser melting process for hematite-doped aluminum oxide. Advanced Engineering Materials, 21(6), 1801352 (10 pp.). https://doi.org/10.1002/adem.201801352
Relief of the residual stresses in ceramic-metal joints by a layered braze structure
Galli, M., Botsis, J., & Janczak-Rusch, J. (2006). Relief of the residual stresses in ceramic-metal joints by a layered braze structure. Advanced Engineering Materials, 8(3), 197-201. https://doi.org/10.1002/adem.200500233
Influence of Ti on the mechanical properties of AgCuInTi active brazing fillers
Galli, M., Janczak-Rusch, J., & Szankowska, M. (2009). Influence of Ti on the mechanical properties of AgCuInTi active brazing fillers. Advanced Engineering Materials, 11(1-2), 71-74. https://doi.org/10.1002/adem.200800310
Carbon nanotubes for cold electron sources
Gröning, P., Ruffieux, P., Schlapbach, L., & Gröning, O. (2003). Carbon nanotubes for cold electron sources. Advanced Engineering Materials, 5(8), 541-550. https://doi.org/10.1002/adem.200310098
Nanotechnology: an approach to mimic natural architectures and concepts
Gröning, P. (2005). Nanotechnology: an approach to mimic natural architectures and concepts. Advanced Engineering Materials, 7(5), 279-291. https://doi.org/10.1002/adem.200500089
Nanoscale 3D electroforming by template pyrolysis
Gunderson, C., Rohbeck, N., Tranchant, M., Michler, J., & Philippe, L. (2021). Nanoscale 3D electroforming by template pyrolysis. Advanced Engineering Materials, 23(5), 2001293 (7 pp.). https://doi.org/10.1002/adem.202001293
 

Pages