Active Filters

  • (-) Empa Laboratories ≠ 206 Mechanics of Materials and Nanostructures
  • (-) Funding (EC, SNSF) = Novel Ionic Conductors
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Complex metal borohydrides: multifunctional materials for energy storage and conversion
Mohtadi, R., Remhof, A., & Jena, P. (2016). Complex metal borohydrides: multifunctional materials for energy storage and conversion. Journal of Physics: Condensed Matter, 28(35), 353001 (19 pp.). https://doi.org/10.1088/0953-8984/28/35/353001
Reorientational hydrogen dynamics in complex hydrides with enhanced Li<sup>+</sup> conduction
Burankova, T., Duchêne, L., Łodziana, Z., Frick, B., Yan, Y., Kühnel, R. S., … Embs, J. P. (2017). Reorientational hydrogen dynamics in complex hydrides with enhanced Li+ conduction. Journal of Physical Chemistry C, 121(33), 17693-17702. https://doi.org/10.1021/acs.jpcc.7b05651
Synthesis, stability and Li-ion mobility of nanoconfined Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub>
Yan, Y., Rentsch, D., Battaglia, C., & Remhof, A. (2017). Synthesis, stability and Li-ion mobility of nanoconfined Li2B12H12. Dalton Transactions, 46(37), 12434-12437. https://doi.org/10.1039/C7DT02946B
A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes
Yan, Y., Kühnel, R. S., Remhof, A., Duchêne, L., Cuervo Reyes, E., Rentsch, D., … Battaglia, C. (2017). A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes. Advanced Energy Materials, 7(19), 1700294 (7 pp.). https://doi.org/10.1002/aenm.201700294
Confinement effects for lithium borohydride: comparing silica and carbon scaffolds
Suwarno, Ngene, P., Nale, A., Eggenhuisen, T. M., Oschatz, M., Embs, J. P., … de Jongh, P. E. (2017). Confinement effects for lithium borohydride: comparing silica and carbon scaffolds. Journal of Physical Chemistry C, 121(8), 4197-4205. https://doi.org/10.1021/acs.jpcc.6b13094
Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries
Roedern, E., Kühnel, R. S., Remhof, A., & Battaglia, C. (2017). Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Scientific Reports, 7, 46189 (6 pp.). https://doi.org/10.1038/srep46189
A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture
Duchêne, L., Kühnel, R. S., Rentsch, D., Remhof, A., Hagemann, H., & Battaglia, C. (2017). A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chemical Communications, 53(30), 4195-4198. https://doi.org/10.1039/C7CC00794A
A stable 3 V all-solid-state sodium–ion battery based on a <i>closo</i>-borate electrolyte
Duchêne, L., Kühnel, R. S., Stilp, E., Cuervo Reyes, E., Remhof, A., Hagemann, H., & Battaglia, C. (2017). A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte. Energy and Environmental Science, 10(12), 2609-2615. https://doi.org/10.1039/C7EE02420G
Direct rehydrogenation of LiBH<SUB>4</SUB> from H-deficient Li<SUB>2</SUB>B<SUB>12</SUB>H<SUB>12-x</SUB>
Yan, Y., Wang, H., Zhu, M., Cai, W., Rentsch, D., & Remhof, A. (2018). Direct rehydrogenation of LiBH4 from H-deficient Li2B12H12-x. Crystals, 8(3), 131 (7 pp.). https://doi.org/10.3390/cryst8030131
Dynamics of the coordination complexes in a solid-state Mg electrolyte
Burankova, T., Roedern, E., Maniadaki, A. E., Hagemann, H., Rentsch, D., Łodziana, Z., … Embs, J. P. (2018). Dynamics of the coordination complexes in a solid-state Mg electrolyte. Journal of Physical Chemistry Letters, 9(22), 6450-6455. https://doi.org/10.1021/acs.jpclett.8b02965
Separators and electrolytes for rechargeable batteries: fundamentals and perspectives
Nestler, T., Roedern, E., Uvarov, N. F., Hanzig, J., Elia, G. A., & de Vivanco, M. (2019). Separators and electrolytes for rechargeable batteries: fundamentals and perspectives. Physical Sciences Reviews, 4(4), 20170115 (29 pp.). https://doi.org/10.1515/psr-2017-0115
Direct solution‐based synthesis of the Na&lt;sub&gt;4&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;) solid electrolyte
Gigante, A., Duchêne, L., Moury, R., Pupier, M., Remhof, A., & Hagemann, H. (2019). Direct solution‐based synthesis of the Na4(B12H12)(B10H10) solid electrolyte. ChemSusChem, 12(21), 4832-4837. https://doi.org/10.1002/cssc.201902152
Ionic conduction mechanism in the Na&lt;sub&gt;2&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)&lt;sub&gt;0.5&lt;/sub&gt;(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;)&lt;sub&gt;0.5 &lt;/sub&gt;&lt;em&gt;closo&lt;/em&gt;-borate
Duchêne, L., Lunghammer, S., Burankova, T., Liao, W. C., Embs, J. P., Copéret, C., … Battaglia, C. (2019). Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: interplay of disorder and ion–ion interactions. Chemistry of Materials, 31(9), 3449-3460. https://doi.org/10.1021/acs.chemmater.9b00610
Pressure-induced phase transitions in Na&lt;sub&gt;2&lt;/sub&gt;B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;, structural investigation on a candidate for solid-state electrolyte
Moury, R., Łodziana, Z., Remhof, A., Duchêne, L., Roedern, E., Gigante, A., & Hagemann, H. (2019). Pressure-induced phase transitions in Na2B12H12, structural investigation on a candidate for solid-state electrolyte. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75(3), 406-413. https://doi.org/10.1107/S2052520619004670
Electrochemical oxidative stability of hydroborate-based solid-state electrolytes
Asakura, R., Duchêne, L., Kühnel, R. S., Remhof, A., Hagemann, H., & Battaglia, C. (2019). Electrochemical oxidative stability of hydroborate-based solid-state electrolytes. ACS Applied Energy Materials, 2(9), 6924-6930. https://doi.org/10.1021/acsaem.9b01487
Experimental investigation of Mg(B&lt;sub&gt;3&lt;/sub&gt;H&lt;sub&gt;8&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; dimensionality, materials for energy storage applications
Moury, R., Gigante, A., Remhof, A., Roedern, E., & Hagemann, H. (2020). Experimental investigation of Mg(B3H8)2 dimensionality, materials for energy storage applications. Dalton Transactions, 49(35), 12168-12173. https://doi.org/10.1039/D0DT02170A
Crystallization of &lt;em&gt;closo&lt;/em&gt;-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries
Duchêne, L., Kim, D. H., Song, Y. B., Jun, S., Moury, R., Remhof, A., … Battaglia, C. (2020). Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries. Energy Storage Materials, 26, 543-549. https://doi.org/10.1016/j.ensm.2019.11.027
&lt;em&gt;Nido&lt;/em&gt;-Borate/&lt;em&gt;Closo&lt;/em&gt;-borate mixed-anion electrolytes for all-solid-state batteries
Payandeh, S. H., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., … Battaglia, C. (2020). Nido-Borate/Closo-borate mixed-anion electrolytes for all-solid-state batteries. Chemistry of Materials, 32, 1101-1110. https://doi.org/10.1021/acs.chemmater.9b03933