Active Filters

  • (-) Empa Laboratories ≠ 206 Mechanics of Materials and Nanostructures
  • (-) Journal = Chemistry of Materials
Search Results 1 - 20 of 71

Pages

  • RSS Feed
Select Page
Nonclassical nucleation and growth of Pd nanocrystals from aqueous solution studied by in situ liquid transmission electron microscopy
Dachraoui, W., & Erni, R. (2023). Nonclassical nucleation and growth of Pd nanocrystals from aqueous solution studied by in situ liquid transmission electron microscopy. Chemistry of Materials, 35(3), 1201-1208. https://doi.org/10.1021/acs.chemmater.2c03226
Solution-processed Cu<sub>2</sub>S nanostructures for solar hydrogen production
Zhang, X., Pollitt, S., Jung, G., Niu, W., Adams, P., Bühler, J., … Tilley, S. D. (2023). Solution-processed Cu2S nanostructures for solar hydrogen production. Chemistry of Materials, 35(6), 2371-2380. https://doi.org/10.1021/acs.chemmater.2c03489
Synthesis and electronic structure of mid-infrared absorbing Cu<sub>3</sub>SbSe<sub>4</sub> and Cu<em><sub>x</sub></em>SbSe<sub>4</sub> nanocrystals
Moser, A., Yarema, O., Garcia, G., Luisier, M., Longo, F., Billeter, E., … Wood, V. (2023). Synthesis and electronic structure of mid-infrared absorbing Cu3SbSe4 and CuxSbSe4 nanocrystals. Chemistry of Materials, 35(16), 6323-6331. https://doi.org/10.1021/acs.chemmater.3c00911
Disorder and halide distributions in cesium lead halide nanocrystals as seen by colloidal <sup>133</sup>Cs nuclear magnetic resonance spectroscopy
Aebli, M., Kaul, C. J., Yazdani, N., Krieg, F., Bernasconi, C., Guggisberg, D., … Kovalenko, M. V. (2023). Disorder and halide distributions in cesium lead halide nanocrystals as seen by colloidal 133Cs nuclear magnetic resonance spectroscopy. Chemistry of Materials, 36(6), 2599-3054. https://doi.org/10.1021/acs.chemmater.3c02901
Colloidal CsPbX<sub>3</sub> nanocrystals with thin metal oxide gel coatings
Guggisberg, D., Yakunin, S., Neff, C., Aebli, M., Günther, D., Kovalenko, M. V., & Dirin, D. N. (2022). Colloidal CsPbX3 nanocrystals with thin metal oxide gel coatings. Chemistry of Materials, 35(7), 2827-2834. https://doi.org/10.1021/acs.chemmater.2c03562
Size segregation and atomic structural coherence in spontaneous assemblies of colloidal cesium lead halide nanocrystals
Bertolotti, F., Vivani, A., Ferri, F., Anzini, P., Cervellino, A., Bodnarchuk, M. I., … Guagliardi, A. (2022). Size segregation and atomic structural coherence in spontaneous assemblies of colloidal cesium lead halide nanocrystals. Chemistry of Materials, 34(2), 594-608. https://doi.org/10.1021/acs.chemmater.1c03162
A nearly zero-strain Li-rich rock-salt oxide with multielectron redox reactions as a cathode for Li-ion batteries
Zhou, K., Li, Y., Ha, Y., Zhang, M., Dachraoui, W., Liu, H., … Yang, Y. (2022). A nearly zero-strain Li-rich rock-salt oxide with multielectron redox reactions as a cathode for Li-ion batteries. Chemistry of Materials, 34(21), 9711-9721. https://doi.org/10.1021/acs.chemmater.2c02519
Scalable synthesis of ultrasmall metal oxide radio-enhancers outperforming gold
Gerken, L. R. H., Neuer, A. L., Gschwend, P. M., Keevend, K., Gogos, A., Anthis, A. H. C., … Herrmann, I. K. (2021). Scalable synthesis of ultrasmall metal oxide radio-enhancers outperforming gold. Chemistry of Materials, 33(9), 3098-3112. https://doi.org/10.1021/acs.chemmater.0c04565
Synthesis and characterization of the ternary nitride semiconductor Zn<sub>2</sub>VN<sub>3</sub>: theoretical prediction, combinatorial screening, and epitaxial stabilization
Zhuk, S., Kistanov, A. A., Boehme, S. C., Ott, N., La Mattina, F., Stiefel, M., … Siol, S. (2021). Synthesis and characterization of the ternary nitride semiconductor Zn2VN3: theoretical prediction, combinatorial screening, and epitaxial stabilization. Chemistry of Materials, 33(23), 9306-9316. https://doi.org/10.1021/acs.chemmater.1c03025
Nanoscale design of high-quality epitaxial aurivillius thin films
Gradauskaite, E., Gray, N., Campanini, M., Rossell, M. D., & Trassin, M. (2021). Nanoscale design of high-quality epitaxial aurivillius thin films. Chemistry of Materials, 33(23), 9439-9446. https://doi.org/10.1021/acs.chemmater.1c03466
S-rich PbS quantum dots: a promising p-type material for optoelectronic devices
Bederak, D., Dirin, D. N., Sukharevska, N., Momand, J., Kovalenko, M. V., & Loi, M. A. (2021). S-rich PbS quantum dots: a promising p-type material for optoelectronic devices. Chemistry of Materials, 33(1), 320-326. https://doi.org/10.1021/acs.chemmater.0c03865
Dynamic formation of metal-based traps in photoexcited colloidal quantum dots and their relevance for photoluminescence
du Fossé, I., Boehme, S. C., Infante, I., & Houtepen, A. J. (2021). Dynamic formation of metal-based traps in photoexcited colloidal quantum dots and their relevance for photoluminescence. Chemistry of Materials, 33(9), 3349-3358. https://doi.org/10.1021/acs.chemmater.1c00561
Local structure of multinary hybrid lead halide perovskites investigated by nuclear quadrupole resonance spectroscopy
Aebli, M., Porenta, N., Aregger, N., & Kovalenko, M. V. (2021). Local structure of multinary hybrid lead halide perovskites investigated by nuclear quadrupole resonance spectroscopy. Chemistry of Materials, 33(17), 6965-6973. https://doi.org/10.1021/acs.chemmater.1c01945
On the mechanism of alkylammonium ligands binding to the surface of CsPbBr<sub>3 </sub>nanocrystals
Stelmakh, A., Aebli, M., Baumketner, A., & Kovalenko, M. V. (2021). On the mechanism of alkylammonium ligands binding to the surface of CsPbBr3 nanocrystals. Chemistry of Materials, 33(15), 5962-5973. https://doi.org/10.1021/acs.chemmater.1c01081
Lone-pair-induced structural ordering in the mixed-valent 0D metal-halides Rb<sub>23</sub>Bi<sup>III</sup><em><sub>x</sub></em>Sb<sup>III</sup><sub>7-<em>x</em></sub>Sb<sup>V</sup><sub>2</sub>Cl<sub>54</sub> (0 ≤ <em>x</em> ≤ 7)
Benin, B. M., McCall, K. M., Wörle, M., Borgeaud, D., Vonderach, T., Sakhatskyi, K., … Kovalenko, M. V. (2021). Lone-pair-induced structural ordering in the mixed-valent 0D metal-halides Rb23BiIIIxSbIII7-xSbV2Cl54 (0 ≤ x ≤ 7). Chemistry of Materials, 33(7), 2408-2419. https://doi.org/10.1021/acs.chemmater.0c04491
Structural evolution of iron(III) trifluoroacetate upon thermal decomposition: chains, layers, and rings
Wörle, M., Guntlin, C. P., Gyr, L., Sougrati, M. T., Lambert, C. H., Kravchyk, K. V., … Kovalenko, M. V. (2020). Structural evolution of iron(III) trifluoroacetate upon thermal decomposition: chains, layers, and rings. Chemistry of Materials, 32(6), 2482-2488. https://doi.org/10.1021/acs.chemmater.9b05004
Sb&lt;sub&gt;2&lt;/sub&gt;S&lt;sub&gt;3&lt;/sub&gt;/TiO&lt;sub&gt;2&lt;/sub&gt; Heterojunction photocathodes: band alignment and water splitting properties
Prabhakar, R. R., Moehl, T., Siol, S., Suh, J., & Tilley, S. D. (2020). Sb2S3/TiO2 Heterojunction photocathodes: band alignment and water splitting properties. Chemistry of Materials, 32(17), 7247-7253. https://doi.org/10.1021/acs.chemmater.0c01581
Self-templating strategies for transition metal sulfide nanoboxes as robust bifunctional electrocatalysts
Zhao, Y., Mavrokefalos, C. K., Zhang, P., Erni, R., Li, J., Triana, C. A., & Patzke, G. R. (2020). Self-templating strategies for transition metal sulfide nanoboxes as robust bifunctional electrocatalysts. Chemistry of Materials, 32(4), 1371-1383. https://doi.org/10.1021/acs.chemmater.9b02933
Tracking the fluorescence lifetimes of cesium lead halide perovskite nanocrystals during their synthesis using a fully automated optofluidic platform
Lignos, I., Maceiczyk, R. M., Kovalenko, M. V., & Stavrakis, S. (2020). Tracking the fluorescence lifetimes of cesium lead halide perovskite nanocrystals during their synthesis using a fully automated optofluidic platform. Chemistry of Materials, 32(1), 27-37. https://doi.org/10.1021/acs.chemmater.9b03438
&lt;em&gt;Nido&lt;/em&gt;-Borate/&lt;em&gt;Closo&lt;/em&gt;-borate mixed-anion electrolytes for all-solid-state batteries
Payandeh, S. H., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., … Battaglia, C. (2020). Nido-Borate/Closo-borate mixed-anion electrolytes for all-solid-state batteries. Chemistry of Materials, 32, 1101-1110. https://doi.org/10.1021/acs.chemmater.9b03933
 

Pages