Active Filters

  • (-) Empa Laboratories ≠ 206 Mechanics of Materials and Nanostructures
  • (-) Keywords = nanocomposites
Search Results 1 - 20 of 54
Select Page
Cellulose fibrils in wood cell walls and their potential for technical applications
Zimmermann, T. (2007). Cellulose fibrils in wood cell walls and their potential for technical applications. In U. Schmitt (Ed.), Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft: Vol. 223. The plant cell wall - recent advances and new perspectives. Proceedings of the 2nd New Zealand-German workshop on plant cell walls, Hamburg, 4 - 6 October 2006 (pp. 137-151). Wiedebusch.
Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential
Zimmermann, T., Bordeanu, N., & Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79(4), 1086-1093. https://doi.org/10.1016/j.carbpol.2009.10.045
Wear protective coatings consisting of TiC-SiC-a-C:H deposited by magnetron sputtering
Zehnder, T., Matthey, J., Schwaller, P., Klein, A., Steinmann, P. A., & Patscheider, J. (2003). Wear protective coatings consisting of TiC-SiC-a-C:H deposited by magnetron sputtering. Surface and Coatings Technology, 163-164, 238-244. https://doi.org/10.1016/S0257-8972(02)00477-2
Significant <I>ZT</I> enhancement in p-type Ti(Co,Fe)Sb–InSb nanocomposites via a synergistic high-mobility electron injection, energy-filtering and boundary-scattering approach
Xie, W. J., Yan, Y. G., Zhu, S., Zhou, M., Populoh, S., Gałązka, K., … Tritt, T. M. (2013). Significant ZT enhancement in p-type Ti(Co,Fe)Sb–InSb nanocomposites via a synergistic high-mobility electron injection, energy-filtering and boundary-scattering approach. Acta Materialia, 61(6), 2087-2094. https://doi.org/10.1016/j.actamat.2012.12.028
Temperature dependency of nucleation efficiency of carbon nanotubes in PET and PBT
Wurm, A., Herrmann, A., Cornelius, M., Zhuravlev, E., Pospiech, D., Nicula, R., & Schick, C. (2015). Temperature dependency of nucleation efficiency of carbon nanotubes in PET and PBT. Macromolecular Materials and Engineering, 300(6), 637-649. https://doi.org/10.1002/mame.201400405
Nanostructured surface modification of microporous ceramics for efficient virus filtration
Wegmann, M., Michen, B., & Graule, T. (2008). Nanostructured surface modification of microporous ceramics for efficient virus filtration. Journal of the European Ceramic Society, 28(8), 1603-1612. https://doi.org/10.1016/j.jeurceramsoc.2007.11.002
All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels
Wang, J., Chiappone, A., Roppolo, I., Shao, F., Fantino, E., Lorusso, M., … Grützmacher, H. (2018). All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angewandte Chemie International Edition, 57(9), 2353-2356. https://doi.org/10.1002/anie.201710951
AFM laser texturing on Chitosan/Au precursor nanocomposite materials for lithography technique
Spano, F., Rossi, R. M., Massaro, A., & Lay-Ekuakille, A. (2015). AFM laser texturing on Chitosan/Au precursor nanocomposite materials for lithography technique. In 2015 1st workshop on nanotechnology in instrumentation and measurement (NANOFIM) (pp. 184-188). https://doi.org/10.1109/NANOFIM.2015.8425278
Flexible touch sensors based on nanocomposites embedding polymeric optical fibers for artificial skin applications
Spano, F., Dabrowska, A., Quandt, B. M., Boesel, L., Rossi, R. M., Massaro, A., & Lay-Ekuakille, A. (2015). Flexible touch sensors based on nanocomposites embedding polymeric optical fibers for artificial skin applications. In 2015 IEEE 15th international conference on nanotechnology (IEEE-NANO) (pp. 1295-1298). https://doi.org/10.1109/NANO.2015.7388870
Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials
Siqueira, G., Oksman, K., Tadokoro, S. K., & Mathew, A. P. (2016). Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Composites Science and Technology, 123, 49-56. https://doi.org/10.1016/j.compscitech.2015.12.001
Release of carbon nanotubes from polymer nanocomposites
Schlagenhauf, L., Nüesch, F., & Wang, J. (2014). Release of carbon nanotubes from polymer nanocomposites. Fibers, 2(2), 108-127. https://doi.org/10.3390/fib2020108
A review on new mesostructured composite materials: part II. characterization and properties of polymer–mesoporous silica nanocomposite
Salimian, S., Zadhoush, A., & Mohammadi, A. (2018). A review on new mesostructured composite materials: part II. characterization and properties of polymer–mesoporous silica nanocomposite. Journal of Reinforced Plastics and Composites, 37(11), 738-769. https://doi.org/10.1177/0731684418760205
Morphology, microstructure evolution and optical properties of Al–Si–N nanocomposite coatings
Pélisson-Schecker, A., Hug, H. J., & Patscheider, J. (2014). Morphology, microstructure evolution and optical properties of Al–Si–N nanocomposite coatings. Surface and Coatings Technology, 257, 114-120. https://doi.org/10.1016/j.surfcoat.2014.08.053
Polyoxomolybdate-based selective membranes for chemical protection
Popa, A. M., Hu, L., Crespy, D., Henry, M., & Rossi, R. M. (2011). Polyoxomolybdate-based selective membranes for chemical protection. Journal of Membrane Science, 373(1-2), 196-201. https://doi.org/10.1016/j.memsci.2011.03.015
Nanocomposite hard coatings for wear protection
Patscheider, J. (2003). Nanocomposite hard coatings for wear protection. MRS Bulletin, 28(3), 180-183. https://doi.org/10.1557/mrs2003.59
Polymer-assisted in-situ thermal reduction of silver precursors: a solventless route for silver nanoparticles-polymer composites
Parida, D., Simonetti, P., Frison, R., Bülbül, E., Altenried, S., Arroyo, Y., … Gaan, S. (2020). Polymer-assisted in-situ thermal reduction of silver precursors: a solventless route for silver nanoparticles-polymer composites. Chemical Engineering Journal, 389, 123983 (12 pp.). https://doi.org/10.1016/j.cej.2019.123983
Operation by optoelectronic features of cadmium sulphide nanocrystallites embedded into the photopolymer polyvinyl alcohol matrices
Ozga, K., Yanchuk, O. M., Tsurkova, L. V., Marchuk, O. V., Urubkov, I. V., Romanyuk, Y. E., … Kityk, I. V. (2018). Operation by optoelectronic features of cadmium sulphide nanocrystallites embedded into the photopolymer polyvinyl alcohol matrices. Applied Surface Science, 446, 209-214. https://doi.org/10.1016/j.apsusc.2018.01.164
Review of the recent developments in cellulose nanocomposite processing
Oksmana, K., Aitomäki, Y., Mathew, A. P., Siqueira, G., Zhou, Q., Butylina, S., … Hooshmand, S. (2016). Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 83, 2-18. https://doi.org/10.1016/j.compositesa.2015.10.041
Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite
Netkueakul, W., Fischer, B., Walder, C., Nüesch, F., Rees, M., Jovic, M., … Wang, J. (2020). Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite. Polymers, 12(10), 2349 (19 pp.). https://doi.org/10.3390/polym12102349
Piezoresistive carbon-based composites for sensor applications: effects of polarity and non-rubber components on shape recovery
Nakaramontri, Y., Kummerlöwe, C., Nakason, C., Pichaiyut, S., Wisunthon, S., & Clemens, F. (2020). Piezoresistive carbon-based composites for sensor applications: effects of polarity and non-rubber components on shape recovery. eXPRESS Polymer Letters, 14(10), 970-986. https://doi.org/10.3144/expresspolymlett.2020.79