Active Filters

  • (-) Empa Laboratories ≠ 206 Mechanics of Materials and Nanostructures
  • (-) Keywords = perovskites
Search Results 1 - 20 of 58
Select Page
Synthesis, Crystal Structure, Electric and Magnetic Properties of LaVO<SUB>2.78</SUB>N<SUB>0.10</SUB>
Yoon, S., Maegli, A. E., Karvonen, L., Shkabko, A., Populoh, S., Gałązka, K., … Weidenkaff, A. (2014). Synthesis, Crystal Structure, Electric and Magnetic Properties of LaVO2.78N0.10. Zeitschrift für Anorganische und Allgemeine Chemie, 640(5), 797-804. https://doi.org/10.1002/zaac.201300593
Development of thermoelectric oxides for renewable energy conversion technologies
Weidenkaff, A., Robert, R., Aguirre, M., Bocher, L., Lippert, T., & Canulescu, S. (2008). Development of thermoelectric oxides for renewable energy conversion technologies. Renewable Energy, 33(2), 342-347. https://doi.org/10.1016/j.renene.2007.05.032
Catalytic combustion of methane on nano-structured perovskite-type oxides fabricated by ultrasonic spray combustion
Wei, X., Hug, P., Figi, R., Trottmann, M., Weidenkaff, A., & Ferri, D. (2010). Catalytic combustion of methane on nano-structured perovskite-type oxides fabricated by ultrasonic spray combustion. Applied Catalysis B: Environmental, 94(1-2), 27-37. https://doi.org/10.1016/j.apcatb.2009.10.017
Influence of A-site variation and B-site substitution on the physical properties of (La,Sr)FeO<SUB>3</SUB> based perovskites
Vogt, U. F., Holtappels, P., Sfeir, J., Richter, J., Duval, S., Wiedenmann, D., & Züttel, A. (2009). Influence of A-site variation and B-site substitution on the physical properties of (La,Sr)FeO3 based perovskites. Fuel Cells, 9(6), 899-906. https://doi.org/10.1002/fuce.200800116
B-site substituted lanthanum strontium ferrites as electrode materials for electrochemical applications
Vogt, U. F., Sfeir, J., Richter, J., Soltmann, C., & Holtappels, P. (2008). B-site substituted lanthanum strontium ferrites as electrode materials for electrochemical applications. Pure and Applied Chemistry, 80(11), 2543-2552. https://doi.org/10.1351/pac200880112543
Solution-processed low-bandgap CuIn(S,Se)<sub>2</sub> absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells
Uhl, A. R., Rajagopal, A., Clark, J. A., Murray, A., Feurer, T., Buecheler, S., … Hillhouse, H. W. (2018). Solution-processed low-bandgap CuIn(S,Se)2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells. Advanced Energy Materials, 8(27), 1801254 (8 pp.). https://doi.org/10.1002/aenm.201801254
Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length
Turedi, B., Lintangpradipto, M. N., Sandberg, O. J., Yazmaciyan, A., Matt, G. J., Alsalloum, A. Y., … Bakr, O. M. (2022). Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length. Advanced Materials, 34(47), 2202390 (9 pp.). https://doi.org/10.1002/adma.202202390
Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module
Tomeš, P., Robert, R., Trottmann, M., Bocher, L., Aguirre, M. H., Bitschi, A., … Weidenkaff, A. (2010). Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module. Journal of Electronic Materials, 39(9), 1696-1703. https://doi.org/10.1007/s11664-010-1214-4
Hydrogen-like wannier–mott excitons in single crystal of methylammonium lead bromide perovskite
Tilchin, J., Dirin, D. N., Maikov, G. I., Sashchiuk, A., Kovalenko, M. V., & Lifshitz, E. (2016). Hydrogen-like wannier–mott excitons in single crystal of methylammonium lead bromide perovskite. ACS Nano, 10(6), 6363-6371. https://doi.org/10.1021/acsnano.6b02734
Enhancement of redox- and phase-stability of thermoelectric CaMnO<SUB>3−</SUB><I><SUB>δ</SUB></I> by substitution
Thiel, P., Populoh, S., Yoon, S., & Weidenkaff, A. (2015). Enhancement of redox- and phase-stability of thermoelectric CaMnO3−δ by substitution. Journal of Solid State Chemistry, 229, 62-67. https://doi.org/10.1016/j.jssc.2015.05.013
Characterization of perovskite powders for cathode and oxygen membranes made by different synthesis routes
Sfeir, J., Vaucher, S., Holtappels, P., Vogt, U., Schindler, H. J., Van herle, J., … Bucheli, O. (2005). Characterization of perovskite powders for cathode and oxygen membranes made by different synthesis routes. Journal of the European Ceramic Society, 25(12), 1991-1995. https://doi.org/10.1016/j.jeurceramsoc.2005.03.124
Synthesis and high-temperature thermoelectric properties of Ni and Ti substituted LaCoO<SUB>3</SUB>
Robert, R., Bocher, L., Trottmann, M., Reller, A., & Weidenkaff, A. (2006). Synthesis and high-temperature thermoelectric properties of Ni and Ti substituted LaCoO3. Journal of Solid State Chemistry, 179(12), 3893-3899. https://doi.org/10.1016/j.jssc.2006.08.022
Composite ceramic fuel cell fabricated by vacuum plasma spraying
Rambert, S., McEvoy, A. J., & Barthel, K. (1999). Composite ceramic fuel cell fabricated by vacuum plasma spraying. Journal of the European Ceramic Society, 19(6-7), 921-923. https://doi.org/10.1016/s0955-2219(98)00345-8
Understanding the growth mechanism of BaZrS<sub>3</sub> chalcogenide perovskite thin films from sulfurized oxide precursors
Ramanandan, S. P., Giunto, A., Stutz, E. Z., Reynier, B., Lefevre, I. T. F. M., Rusu, M., … Dimitrievska, M. (2023). Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors. Journal of Physics: Energy, 5(1), 014013 (14 pp.). https://doi.org/10.1088/2515-7655/aca9fe
Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure
Rainò, G., Nedelcu, G., Protesescu, L., Bodnarchuk, M. I., Kovalenko, M. V., Mahrt, R. F., & Stöferle, T. (2016). Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano, 10(2), 2485-2490. https://doi.org/10.1021/acsnano.5b07328
Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals
Protesescu, L., Yakunin, S., Kumar, S., Bär, J., Bertolotti, F., Masciocchi, N., … Kovalenko, M. V. (2017). Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano, 11(3), 3119-3134. https://doi.org/10.1021/acsnano.7b00116
Nanocrystals of cesium lead halide perovskites (CsPbX<SUB>3</SUB>, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut
Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., … Kovalenko, M. V. (2015). Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 15(6), 3692-3696. https://doi.org/10.1021/nl5048779
Perovskite-related oxynitrides in photocatalysis
Pokrant, S., Maegli, A. E., Chiarello, G. L., & Weidenkaff, A. (2013). Perovskite-related oxynitrides in photocatalysis. Chimia, 67(3), 162-167. https://doi.org/10.2533/chimia.2013.162
Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals
Papagiorgis, P., Manoli, A., Protesescu, L., Achilleos, C., Violaris, M., Nicolaides, K., … Itskos, G. (2018). Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals. ACS Photonics, 5(3), 907-917. https://doi.org/10.1021/acsphotonics.7b01159
Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters
Papagiorgis, P. G., Manoli, A., Alexiou, A., Karacosta, P., Karagiorgis, X., Papaparaskeva, G., … Itskos, G. (2019). Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters. Frontiers in Chemistry, 7, 87 (12 pp.). https://doi.org/10.3389/fchem.2019.00087