| Function and electronic structure of the SnO<sub>2</sub> buffer layer between the <em>α</em>-Fe<sub>2</sub>O<sub>3</sub> water oxidation photoelectrode and the transparent conducting oxide current collector
Hu, Y., Boudoire, F., Mayer, M. T., Yoon, S., Graetzel, M., & Braun, A. (2021). Function and electronic structure of the SnO2 buffer layer between the α-Fe2O3 water oxidation photoelectrode and the transparent conducting oxide current collector. Journal of Physical Chemistry C, 125(17), 9158-9168. https://doi.org/10.1021/acs.jpcc.1c01809 |
| The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting
Braun, A., Hu, Y., Boudoire, F., Bora, D. K., Sarma, D. D., Grätzel, M., & Eggleston, C. M. (2016). The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting. Catalysis Today, 260, 72-81. https://doi.org/10.1016/j.cattod.2015.07.024 |
| Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes
Hu, Y., Boudoire, F., Herrmann-Geppert, I., Bogdanoff, P., Tsekouras, G., Mun, B. S., … Braun, A. (2016). Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes. Journal of Physical Chemistry C, 120(6), 3250-3258. https://doi.org/10.1021/acs.jpcc.5b08013 |
| The nature of the nonmetal–metal transition in LixCoO2 oxide
Milewska, A., Świerczek, K., Tobola, J., Boudoire, F., Hu, Y., Bora, D. K., … Molenda, J. (2014). The nature of the nonmetal–metal transition in LixCoO2 oxide. Solid State Ionics, 263, 110-118. https://doi.org/10.1016/j.ssi.2014.05.011 |
| Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation
Bora, D. K., Hu, Y., Thiess, S., Erat, S., Feng, X., Mukherjee, S., … Braun, A. (2013). Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation. Journal of Electron Spectroscopy and Related Phenomena, 190(art A), 93-105. https://doi.org/10.1016/j.elspec.2012.11.009 |
| Effect of the titania substitution on the electronic structure and transport properties of FSS-made Fe2O3 nanoparticles for hydrogen sensing
Flak, D., Braun, A., Vollmer, A., & Rekas, M. (2013). Effect of the titania substitution on the electronic structure and transport properties of FSS-made Fe2O3 nanoparticles for hydrogen sensing. Sensors and Actuators B: Chemical, 187, 347-355. https://doi.org/10.1016/j.snb.2012.12.038 |
| Spectroscopic assessment of the role of hydrogen in surface defects, in the electronic structure and transport properties of TiO<SUB>2</SUB>, ZnO and SnO<SUB>2</SUB> nanoparticles
Flak, D., Braun, A., Mun, B. S., Park, J. B., Parlinska-Wojtan, M., Graule, T., & Rekas, M. (2013). Spectroscopic assessment of the role of hydrogen in surface defects, in the electronic structure and transport properties of TiO2, ZnO and SnO2 nanoparticles. Physical Chemistry Chemical Physics, 15(5), 1417-1430. https://doi.org/10.1039/C2CP42601C |
| A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO<SUB>4</SUB>) and multi-wall carbon nanotubes for solar-assisted water splitting
Gaillard, N., Chang, Y., DeAngelis, A., Higgins, S., & Braun, A. (2013). A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting. International Journal of Hydrogen Energy, 38(8), 3166-3176. https://doi.org/10.1016/j.ijhydene.2012.12.104 |
| Formation of an electron hole doped film in the α-Fe<SUB>2</SUB>O<SUB>3</SUB> photoanode upon electrochemical oxidation
Gajda-Schrantz, K., Tymen, S., Boudoire, F., Toth, R., Bora, D. K., Calvet, W., … Braun, A. (2013). Formation of an electron hole doped film in the α-Fe2O3 photoanode upon electrochemical oxidation. Physical Chemistry Chemical Physics, 15(5), 1443-1451. https://doi.org/10.1039/c2cp42597a |
| A dip coating process for large area silicon-doped high performance hematite photoanodes
Hu, Y., Bora, D. K., Boudoire, F., Häussler, F., Graetzel, M., Constable, E. C., & Braun, A. (2013). A dip coating process for large area silicon-doped high performance hematite photoanodes. Journal of Renewable and Sustainable Energy, 5(4), 043109 (9 pp.). https://doi.org/10.1063/1.4812831 |
| Artificial photosynthesis for solar fuels – an evolving research field within AMPEA, a joint programme of the european energy research alliance
Thapper, A., Styring, S., Saracco, G., Rutherford, A. W., Robert, B., Magnuson, A., … Artero, V. (2013). Artificial photosynthesis for solar fuels – an evolving research field within AMPEA, a joint programme of the european energy research alliance. Green, 3(1), 43-57. https://doi.org/10.1515/green-2013-0007 |
| Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting
Braun, A., Sivula, K., Bora, D. K., Zhu, J., Zhang, L., Grätzel, M., … Constable, E. C. (2012). Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. Journal of Physical Chemistry C, 116(32), 16870-16875. https://doi.org/10.1021/jp304254k |
| Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization
Braun, A., Chen, Q., Flak, D., Fortunato, G., Gajda-Schrantz, K., Grätzel, M., … Zhu, J. (2012). Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization. ChemPhysChem, 13(12), 2937-2944. https://doi.org/10.1002/cphc.201200074 |
| Observation of substrate orientation-dependent oxygen defect filling in thin WO<SUB>3−<I>δ</I></SUB>/TiO<SUB>2</SUB> pulsed laser-deposited films with in situ XPS at high oxygen pressure and temperature
Braun, A., Akgul, F. A., Chen, Q., Erat, S., Huang, T. W., Jabeen, N., … Zhang, X. (2012). Observation of substrate orientation-dependent oxygen defect filling in thin WO3−δ/TiO2 pulsed laser-deposited films with in situ XPS at high oxygen pressure and temperature. Chemistry of Materials, 24(17), 3473-3480. https://doi.org/10.1021/cm301829y |