Active Filters

  • (-) … = 179989
  • (-) Full Text = Restricted
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
From single crystal to single atom catalysts: structural factors influencing the performance of metal catalysts for CO<sub>2</sub> electroreduction
Koolen, C. D., Luo, W., & Züttel, A. (2023). From single crystal to single atom catalysts: structural factors influencing the performance of metal catalysts for CO2 electroreduction. ACS Catalysis, 13(2), 948-973. https://doi.org/10.1021/acscatal.2c03842
Electrochemical CO<sub>2</sub> reduction over copper phthalocyanine derived catalysts with enhanced selectivity for multicarbon products
Zhang, J., Pham, T. H. M., Gao, Z., Li, M., Ko, Y., Lombardo, L., … Züttel, A. (2023). Electrochemical CO2 reduction over copper phthalocyanine derived catalysts with enhanced selectivity for multicarbon products. ACS Catalysis, 13(14), 9326-9335. https://doi.org/10.1021/acscatal.3c01439
dSupport-Dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction
Li, M., My Pham, T. H., Ko, Y., Zhao, K., Zhong, L., Luo, W., & Züttel, A. (2022). dSupport-Dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction. ACS Sustainable Chemistry and Engineering, 10(4), 1524-1535. https://doi.org/10.1021/acssuschemeng.1c06935
Surface oxygenate species on TiC reinforce cobalt-catalyzed fischer-tropsch synthesis
Jiang, Q., Luo, W., Piao, Y., Matsumoto, H., Liu, X., Züttel, A., … Liu, Y. (2021). Surface oxygenate species on TiC reinforce cobalt-catalyzed fischer-tropsch synthesis. ACS Catalysis, 11(13), 8087-8096. https://doi.org/10.1021/acscatal.1c00150
Revealing the surface chemistry for CO<sub>2</sub> hydrogenation on Cu/CeO<sub>2- x</sub> using near-ambient-pressure X-ray photoelectron spectroscopy
Li, M., Pham, T. H. M., Oveisi, E., Ko, Y., Luo, W., & Züttel, A. (2021). Revealing the surface chemistry for CO2 hydrogenation on Cu/CeO2- x using near-ambient-pressure X-ray photoelectron spectroscopy. ACS Applied Energy Materials, 4(11), 12326-12335. https://doi.org/10.1021/acsaem.1c02146
Thermal stability of size-selected copper nanoparticles: effect of size, support and CO<sub>2</sub> hydrogenation atmosphere
Li, M., Borsay, A., Dakhchoune, M., Zhao, K., Luo, W., & Züttel, A. (2020). Thermal stability of size-selected copper nanoparticles: effect of size, support and CO2 hydrogenation atmosphere. Applied Surface Science, 510, 145439 (9 pp.). https://doi.org/10.1016/j.apsusc.2020.145439
Crossover of liquid products from electrochemical CO&lt;sub&gt;2&lt;/sub&gt; reduction through gas diffusion electrode and anion exchange membrane
Zhang, J., Luo, W., & Züttel, A. (2020). Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. Journal of Catalysis, 385, 140-145. https://doi.org/10.1016/j.jcat.2020.03.013
3D hierarchical porous indium catalyst for highly efficient electroreduction of CO<sub>2</sub>
Luo, W., Xie, W., Li, M., Zhang, J., & Züttel, A. (2019). 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. Journal of Materials Chemistry A, 7(9), 4505-4515. https://doi.org/10.1039/c8ta11645h
Self-supported copper-based gas diffusion electrodes for CO&lt;sub&gt;2&lt;/sub&gt; electrochemical reduction
Zhang, J., Luo, W., & Züttel, A. (2019). Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction. Journal of Materials Chemistry A, 7(46), 26285-26292. https://doi.org/10.1039/c9ta06736a