Function and electronic structure of the SnO<sub>2</sub> buffer layer between the <em>α</em>-Fe<sub>2</sub>O<sub>3</sub> water oxidation photoelectrode and the transparent conducting oxide current collector Hu, Y., Boudoire, F., Mayer, M. T., Yoon, S., Graetzel, M., & Braun, A. (2021). Function and electronic structure of the SnO2 buffer layer between the α -Fe2 O3 water oxidation photoelectrode and the transparent conducting oxide current collector. Journal of Physical Chemistry C , 125 (17), 9158-9168. https://doi.org/10.1021/acs.jpcc.1c01809
The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting Braun, A., Hu, Y., Boudoire, F., Bora, D. K., Sarma, D. D., Grätzel, M., & Eggleston, C. M. (2016). The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting. Catalysis Today , 260 , 72-81. https://doi.org/10.1016/j.cattod.2015.07.024
Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes Hu, Y., Boudoire, F., Herrmann-Geppert, I., Bogdanoff, P., Tsekouras, G., Mun, B. S., … Braun, A. (2016). Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes. Journal of Physical Chemistry C , 120 (6), 3250-3258. https://doi.org/10.1021/acs.jpcc.5b08013
The nature of the nonmetal–metal transition in LixCoO2 oxide Milewska, A., Świerczek, K., Tobola, J., Boudoire, F., Hu, Y., Bora, D. K., … Molenda, J. (2014). The nature of the nonmetal–metal transition in LixCoO2 oxide. Solid State Ionics , 263 , 110-118. https://doi.org/10.1016/j.ssi.2014.05.011
Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation Bora, D. K., Hu, Y., Thiess, S., Erat, S., Feng, X., Mukherjee, S., … Braun, A. (2013). Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation. Journal of Electron Spectroscopy and Related Phenomena , 190 (art A), 93-105. https://doi.org/10.1016/j.elspec.2012.11.009
Effect of the titania substitution on the electronic structure and transport properties of FSS-made Fe2O3 nanoparticles for hydrogen sensing Flak, D., Braun, A., Vollmer, A., & Rekas, M. (2013). Effect of the titania substitution on the electronic structure and transport properties of FSS-made Fe2O3 nanoparticles for hydrogen sensing. Sensors and Actuators B: Chemical , 187 , 347-355. https://doi.org/10.1016/j.snb.2012.12.038
Spectroscopic assessment of the role of hydrogen in surface defects, in the electronic structure and transport properties of TiO<SUB>2</SUB>, ZnO and SnO<SUB>2</SUB> nanoparticles Flak, D., Braun, A., Mun, B. S., Park, J. B., Parlinska-Wojtan, M., Graule, T., & Rekas, M. (2013). Spectroscopic assessment of the role of hydrogen in surface defects, in the electronic structure and transport properties of TiO2 , ZnO and SnO2 nanoparticles. Physical Chemistry Chemical Physics , 15 (5), 1417-1430. https://doi.org/10.1039/C2CP42601C
A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO<SUB>4</SUB>) and multi-wall carbon nanotubes for solar-assisted water splitting Gaillard, N., Chang, Y., DeAngelis, A., Higgins, S., & Braun, A. (2013). A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4 ) and multi-wall carbon nanotubes for solar-assisted water splitting. International Journal of Hydrogen Energy , 38 (8), 3166-3176. https://doi.org/10.1016/j.ijhydene.2012.12.104
Formation of an electron hole doped film in the α-Fe<SUB>2</SUB>O<SUB>3</SUB> photoanode upon electrochemical oxidation Gajda-Schrantz, K., Tymen, S., Boudoire, F., Toth, R., Bora, D. K., Calvet, W., … Braun, A. (2013). Formation of an electron hole doped film in the α-Fe2 O3 photoanode upon electrochemical oxidation. Physical Chemistry Chemical Physics , 15 (5), 1443-1451. https://doi.org/10.1039/c2cp42597a
A dip coating process for large area silicon-doped high performance hematite photoanodes Hu, Y., Bora, D. K., Boudoire, F., Häussler, F., Graetzel, M., Constable, E. C., & Braun, A. (2013). A dip coating process for large area silicon-doped high performance hematite photoanodes. Journal of Renewable and Sustainable Energy , 5 (4), 043109 (9 pp.). https://doi.org/10.1063/1.4812831
Artificial photosynthesis for solar fuels – an evolving research field within AMPEA, a joint programme of the european energy research alliance Thapper, A., Styring, S., Saracco, G., Rutherford, A. W., Robert, B., Magnuson, A., … Artero, V. (2013). Artificial photosynthesis for solar fuels – an evolving research field within AMPEA, a joint programme of the european energy research alliance. Green , 3 (1), 43-57. https://doi.org/10.1515/green-2013-0007
Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting Braun, A., Sivula, K., Bora, D. K., Zhu, J., Zhang, L., Grätzel, M., … Constable, E. C. (2012). Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. Journal of Physical Chemistry C , 116 (32), 16870-16875. https://doi.org/10.1021/jp304254k
Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization Braun, A., Chen, Q., Flak, D., Fortunato, G., Gajda-Schrantz, K., Grätzel, M., … Zhu, J. (2012). Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization. ChemPhysChem , 13 (12), 2937-2944. https://doi.org/10.1002/cphc.201200074
Observation of substrate orientation-dependent oxygen defect filling in thin WO<SUB>3−<I>δ</I></SUB>/TiO<SUB>2</SUB> pulsed laser-deposited films with in situ XPS at high oxygen pressure and temperature Braun, A., Akgul, F. A., Chen, Q., Erat, S., Huang, T. W., Jabeen, N., … Zhang, X. (2012). Observation of substrate orientation-dependent oxygen defect filling in thin WO3−δ /TiO2 pulsed laser-deposited films with in situ XPS at high oxygen pressure and temperature. Chemistry of Materials , 24 (17), 3473-3480. https://doi.org/10.1021/cm301829y