Active Filters

  • (-) … = empa-units:10
Search Results 1 - 20 of 743

Pages

  • RSS Feed
Select Page
A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems
Artuk, K., Turkay, D., Mensi, M. D., Steele, J. A., Jacobs, D. A., Othman, M., … Wolff, C. M. (2024). A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems. Advanced Materials. https://doi.org/10.1002/adma.202311745
Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579
Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies
Bornschlegl, A. J., Lichtenegger, M. F., Luber, L., Lampe, C., Bodnarchuk, M. I., Kovalenko, M. V., & Urban, A. S. (2024). Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies. Advanced Energy Materials. https://doi.org/10.1002/aenm.202303312
Strong light-matter coupling in lead halide perovskite quantum dot solids
Bujalance, C., Caliò, L., Dirin, D. N., Tiede, D. O., Galisteo-López, J. F., Feist, J., … Míguez, H. (2024). Strong light-matter coupling in lead halide perovskite quantum dot solids. ACS Nano, 18(6), 4922-4931. https://doi.org/10.1021/acsnano.3c10358
Electrochemical activation of Fe-LiF conversion cathodes in thin-film solid-state batteries
Casella, J., Morzy, J., Gilshtein, E., Yarema, M., Futscher, M. H., & Romanyuk, Y. E. (2024). Electrochemical activation of Fe-LiF conversion cathodes in thin-film solid-state batteries. ACS Nano, 18(5), 4352-4359. https://doi.org/10.1021/acsnano.3c10146
3D and multimodal X-ray microscopy reveals the impact of voids in CIGS solar cells
Fevola, G., Ossig, C., Verezhak, M., Garrevoet, J., Guthrey, H. L., Seyrich, M., … Stuckelberger, M. E. (2024). 3D and multimodal X-ray microscopy reveals the impact of voids in CIGS solar cells. Advanced Science, 11(2), 2301873 (8 pp.). https://doi.org/10.1002/advs.202301873
Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance
Gallop, N. P., Maslennikov, D. R., Mondal, N., Goetz, K. P., Dai, Z., Schankler, A. M., … Bakulin, A. A. (2024). Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance. Nature Materials, 23, 88-94. https://doi.org/10.1038/s41563-023-01723-w
Chemistry in Ukraine
Grygorenko, O. O., Lampeka, R. D., Chebanov, V. A., Kovalenko, M. V., & Wuttke, S. (2024). Chemistry in Ukraine. The Chemical Record, 24(2), e202400008 (5 pp.). https://doi.org/10.1002/tcr.202400008
Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method
Guesnay, Q., Sahli, F., Artuk, K., Turkay, D., Kuba, A. G., Mrkyvkova, N., … Wolff, C. M. (2024). Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method. Advanced Energy Materials, 2303423 (11 pp.). https://doi.org/10.1002/aenm.202303423
Narrow-band green-emitting hybrid organic–inorganic Eu (II)-iodides for next-generation micro-LED displays
Han, K., Jin, J., Zhou, X., Duan, Y., Kovalenko, M. V., & Xia, Z. (2024). Narrow-band green-emitting hybrid organic–inorganic Eu (II)-iodides for next-generation micro-LED displays. Advanced Materials. https://doi.org/10.1002/adma.202313247
Assessment of critical stack pressure and temperature in Li‐Garnet batteries
Klimpel, M., Zhang, H., Paggiaro, G., Dubey, R., Okur, F., Jeurgens, L. P. H., … Kovalenko, M. V. (2024). Assessment of critical stack pressure and temperature in Li‐Garnet batteries. Advanced Materials Interfaces, 2300948 (8 pp.). https://doi.org/10.1002/admi.202300948
Designer phospholipid capping ligands for soft metal halide nanocrystals
Morad, V., Stelmakh, A., Svyrydenko, M., Feld, L. G., Boehme, S. C., Aebli, M., … Kovalenko, M. V. (2024). Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature, 626, 542-548. https://doi.org/10.1038/s41586-023-06932-6
Influence of Au, Pt, and C seed layers on lithium nucleation dynamics for anode-free solid-state batteries
Müller, A., Paravicini, L., Morzy, J., Krause, M., Casella, J., Osenciat, N., … Romanyuk, Y. E. (2024). Influence of Au, Pt, and C seed layers on lithium nucleation dynamics for anode-free solid-state batteries. ACS Applied Materials and Interfaces, 16(1), 695-703. https://doi.org/10.1021/acsami.3c14693
Nitrile-functionalized poly(siloxane) as electrolytes for high-energy-density solid-state Li batteries
Okur, F., Sheima, Y., Zimmerli, C., Zhang, H., Helbling, P., Fäh, A., … Kravchyk, K. V. (2024). Nitrile-functionalized poly(siloxane) as electrolytes for high-energy-density solid-state Li batteries. ChemSusChem, 17(3), e202301285 (8 pp.). https://doi.org/10.1002/cssc.202301285
The impact of ligand removal on the optoelectronic properties of inorganic and hybrid lead halide perovskite nanocrystal films
Papagiorgis, P., Sergides, M., Manoli, A., Athanasiou, M., Bernasconi, C., Galatopoulos, F., … Itskos, G. (2024). The impact of ligand removal on the optoelectronic properties of inorganic and hybrid lead halide perovskite nanocrystal films. Advanced Optical Materials, 12(3), 2301501 (13 pp.). https://doi.org/10.1002/adom.202301501
Formation of electron traps in semiconducting polymers via a slow triple-encounter between trap precursor particles
Sedghi, M., Vael, C., Hu, W. H., Bauer, M., Padula, D., Landi, A., … Hany, R. (2024). Formation of electron traps in semiconducting polymers via a slow triple-encounter between trap precursor particles. Science and Technology of Advanced Materials, 25(1), 2312148 (9 pp.). https://doi.org/10.1080/14686996.2024.2312148
Persistent enhancement of exciton diffusivity in CsPbBr<sub>3</sub> nanocrystal solids
Shcherbakov-Wu, W., Saris, S., Sheehan, T. J., Wong, N. N., Powers, E. R., Krieg, F., … Tisdale, W. A. (2024). Persistent enhancement of exciton diffusivity in CsPbBr3 nanocrystal solids. Science Advances, 10(8), eadj2630 (12 pp.). https://doi.org/10.1126/sciadv.adj2630
Hot excitons cool in metal halide perovskite nanocrystals as fast as CdSe nanocrystals
Strandell, D. P., Zenatti, D., Nagpal, P., Ghosh, A., Dirin, D. N., Kovalenko, M. V., & Kambhampati, P. (2024). Hot excitons cool in metal halide perovskite nanocrystals as fast as CdSe nanocrystals. ACS Nano, 18(1), 1054-1062. https://doi.org/10.1021/acsnano.3c10301
Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests
Suo, J., Yang, B., Mosconi, E., Bogachuk, D., Doherty, T. A. S., Frohna, K., … Hagfeldt, A. (2024). Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nature Energy. https://doi.org/10.1038/s41560-023-01421-6
Hysteresis and its correlation to ionic defects in perovskite solar cells
Tammireddy, S., Lintangpradipto, M. N., Telschow, O., Futscher, M. H., Ehrler, B., Bakr, O. M., … Deibel, C. (2024). Hysteresis and its correlation to ionic defects in perovskite solar cells. Journal of Physical Chemistry Letters, 15(5), 1363-1372. https://doi.org/10.1021/acs.jpclett.3c03146
 

Pages