Active Filters

  • (-) … = empa-units:10
  • (-) Journal = ACS Energy Letters
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
On achievable gravimetric and volumetric energy densities of Al dual-ion batteries
Kravchyk, K. V., & Kovalenko, M. V. (2023). On achievable gravimetric and volumetric energy densities of Al dual-ion batteries. ACS Energy Letters, 8(2), 1266-1269. https://doi.org/10.1021/acsenergylett.2c02908
Defect spectroscopy in halide perovskites is dominated by ionic rather than electronic defects
Futscher, M. H., & Deibel, C. (2022). Defect spectroscopy in halide perovskites is dominated by ionic rather than electronic defects. ACS Energy Letters, 7, 140-144. https://doi.org/10.1021/acsenergylett.1c02076
Assessing the drawbacks and benefits of ion migration in lead halide perovskites
Sakhatskyi, K., John, R. A., Guerrero, A., Tsarev, S., Sabisch, S., Das, T., … Kovalenko, M. V. (2022). Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Letters, 7(10), 3401-3414. https://doi.org/10.1021/acsenergylett.2c01663
Exploiting the lability of metal halide perovskites for doping semiconductor nanocomposites
Calcabrini, M., Genç, A., Liu, Y., Kleinhanns, T., Lee, S., Dirin, D. N., … Ibáñez, M. (2021). Exploiting the lability of metal halide perovskites for doping semiconductor nanocomposites. ACS Energy Letters, 6(2), 581-587. https://doi.org/10.1021/acsenergylett.0c02448
Break-even analysis of all-solid-state batteries with Li-garnet solid electrolytes
Kravchyk, K. V., Okur, F., & Kovalenko, M. V. (2021). Break-even analysis of all-solid-state batteries with Li-garnet solid electrolytes. ACS Energy Letters, 6(6), 2202-2207. https://doi.org/10.1021/acsenergylett.1c00672
Highly concentrated, zwitterionic ligand-capped Mn<sup>2+</sup>:CsPb(Br<sub>x</sub>Cl<sub>1- x</sub>)<sub>3</sub> nanocrystals as bright scintillators for fast neutron imaging
Montanarella, F., McCall, K. M., Sakhatskyi, K., Yakunin, S., Trtik, P., Bernasconi, C., … Kovalenko, M. V. (2021). Highly concentrated, zwitterionic ligand-capped Mn2+:CsPb(BrxCl1- x)3 nanocrystals as bright scintillators for fast neutron imaging. ACS Energy Letters, 6, 4365-4373. https://doi.org/10.1021/acsenergylett.1c01923
Physical passivation of grain boundaries and defects in perovskite solar cells by an isolating thin polymer
Ochoa-Martinez, E., Ochoa, M., Ortuso, R. D., Ferdowsi, P., Carron, R., Tiwari, A. N., … Saliba, M. (2021). Physical passivation of grain boundaries and defects in perovskite solar cells by an isolating thin polymer. ACS Energy Letters, 6(7), 2626-2634. https://doi.org/10.1021/acsenergylett.1c01187
Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on n-i-p Architecture
Yang, B., Suo, J., Di Giacomo, F., Olthof, S., Bogachuk, D., Kim, Y., … Hagfeldt, A. (2021). Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on n-i-p Architecture. ACS Energy Letters, 6(11), 3916-3923. https://doi.org/10.1021/acsenergylett.1c01811
Negative thermal quenching in FASnI&lt;sub&gt;3 &lt;/sub&gt;perovskite single crystals and thin films
Kahmann, S., Nazarenko, O., Shao, S., Hordiichuk, O., Kepenekian, M., Even, J., … Loi, M. A. (2020). Negative thermal quenching in FASnI3 perovskite single crystals and thin films. ACS Energy Letters, 5(8), 2512-2519. https://doi.org/10.1021/acsenergylett.0c01166
Limitations of chloroaluminate ionic liquid anolytes for aluminum-graphite dual-ion batteries
Kravchyk, K. V., Seno, C., & Kovalenko, M. V. (2020). Limitations of chloroaluminate ionic liquid anolytes for aluminum-graphite dual-ion batteries. ACS Energy Letters, 5(2), 545-549. https://doi.org/10.1021/acsenergylett.9b02832
Size-dependent biexciton spectrum in CsPbBr&lt;sub&gt;3&lt;/sub&gt; perovskite nanocrystals
Ashner, M. N., Shulenberger, K. E., Krieg, F., Powers, E. R., Kovalenko, M. V., Bawendi, M. G., & Tisdale, W. A. (2019). Size-dependent biexciton spectrum in CsPbBr3 perovskite nanocrystals. ACS Energy Letters, 4(11), 2639-2645. https://doi.org/10.1021/acsenergylett.9b02041
Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals
Bodnarchuk, M. I., Boehme, S. C., ten Brinck, S., Bernasconi, C., Shynkarenko, Y., Krieg, F., … Infante, I. (2019). Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Letters, 4(1), 63-74. https://doi.org/10.1021/acsenergylett.8b01669
Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes
Shynkarenko, Y., Bodnarchuk, M. I., Bernasconi, C., Berezovska, Y., Verteletskyi, V., Ochsenbein, S. T., & Kovalenko, M. V. (2019). Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes. ACS Energy Letters, 4(11), 2703-2711. https://doi.org/10.1021/acsenergylett.9b01915
Colloidal CsPbX<sub>3</sub> (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability
Krieg, F., Ochsenbein, S. T., Yakunin, S., ten Brinck, S., Aellen, P., Süess, A., … Kovalenko, M. V. (2018). Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Letters, 3(3), 641-646. https://doi.org/10.1021/acsenergylett.8b00035
Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance
Huang, H., Bodnarchuk, M. I., Kershaw, S. V., Kovalenko, M. V., & Rogach, A. L. (2017). Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Letters, 2(9), 2071-2083. https://doi.org/10.1021/acsenergylett.7b00547