Active Filters

  • (-) … = empa-units:22
Search Results 1 - 20 of 127

Pages

  • RSS Feed
Select Page
The acoustical properties of tetraethyl orthosilicate based granular silica aerogels
Begum, H., Horoshenkov, K. V., Conte, M., Malfait, W. J., Zhao, S., Koebel, M. M., … Venegas, R. (2021). The acoustical properties of tetraethyl orthosilicate based granular silica aerogels. Journal of the Acoustical Society of America, 149(6), 4149-4158. https://doi.org/10.1121/10.0005200
Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications
Berglund, L., Nissilä, T., Sivaraman, D., Komulainen, S., Telkki, V. V., & Oksman, K. (2021). Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications. ACS Applied Materials and Interfaces, 13(29), 34899-34909. https://doi.org/10.1021/acsami.1c07954
Ureido functionalization through amine-urea transamidation under mild reaction conditions
Guerrero-Alburquerque, N., Zhao, S., Rentsch, D., Koebel, M. M., Lattuada, M., & Malfait, W. J. (2021). Ureido functionalization through amine-urea transamidation under mild reaction conditions. Polymers, 13(10), 1583 (16 pp.). https://doi.org/10.3390/polym13101583
Dense and strong, but superinsulating silica aerogel
Iswar, S., Galmarini, S., Bonanomi, L., Wernery, J., Roumeli, E., Nimalshantha, S., … Malfait, W. J. (2021). Dense and strong, but superinsulating silica aerogel. Acta Materialia, 213, 116959 (9 pp.). https://doi.org/10.1016/j.actamat.2021.116959
Influence of 1D and 2D carbon nanostructures in silica-based aerogels
Lamy-Mendes, A., Malfait, W. J., Sadeghpour, A., Girão, A. V., Silva, R. F., & Durães, L. (2021). Influence of 1D and 2D carbon nanostructures in silica-based aerogels. Carbon, 180, 146-162. https://doi.org/10.1016/j.carbon.2021.05.004
Solid state chemistry: computational chemical analysis for materials science
Lora da Silva, E., Galmarini, S., Maurizi, L., dos Santos, M. J. C., Yang, T., Cooke, D., & Molinari, M. (2021). Solid state chemistry: computational chemical analysis for materials science. In P. B. Wilson & M. Grootveld (Eds.), Theoretical and computational chemistry: Vol. 20. Computational techniques for analytical chemistry and bioanalysis (pp. 287-334). https://doi.org/10.1039/9781788015882-00287
A review on silica aerogel-based materials for acoustic applications
Mazrouei-Sebdani, Z., Begum, H., Schoenwald, S., Horoshenkov, K. V., & Malfait, W. J. (2021). A review on silica aerogel-based materials for acoustic applications. Journal of Non-Crystalline Solids, 562, 120770 (17 pp.). https://doi.org/10.1016/j.jnoncrysol.2021.120770
Template-free synthesis of hybrid silica nanoparticle with functionalized mesostructure for efficient methylene blue removal
Parida, D., Salmeia, K. A., Sadeghpour, A., Zhao, S., Maurya, A. K., Assaf, K. I., … Gaan, S. (2021). Template-free synthesis of hybrid silica nanoparticle with functionalized mesostructure for efficient methylene blue removal. Materials and Design, 201, 109494 (10 pp.). https://doi.org/10.1016/j.matdes.2021.109494
Robust barium phosphonate metal–organic frameworks synthesized under aqueous conditions
Salmeia, K. A., Dolabella, S., Parida, D., Frankcombe, T. J., Afaneh, A. T., Cordova, K. E., … Neels, A. (2021). Robust barium phosphonate metal–organic frameworks synthesized under aqueous conditions. ACS Materials Letters, 3, 1010-1015. https://doi.org/10.1021/acsmaterialslett.1c00275
Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging
Sivaraman, D., Zhao, S., Iswar, S., Lattuada, M., & Malfait, W. J. (2021). Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging. Advanced Engineering Materials. https://doi.org/10.1002/adem.202100376
Development and validation of retention models in supercritical fluid chromatography for impregnation process design
Sun, M., Ülker, Z., Chen, Z., Deeptanshu, S., Johannsen, M., Erkey, C., & Gurikov, P. (2021). Development and validation of retention models in supercritical fluid chromatography for impregnation process design. Applied Sciences, 11(15), 7106 (16 pp.). https://doi.org/10.3390/app11157106
Chemistry of chitosan aerogels: three-ditensional pore control for tailored applications
Takeshita, S., Zhao, S., Malfait, W. J., & Koebel, M. M. (2021). Chemistry of chitosan aerogels: three-ditensional pore control for tailored applications. Angewandte Chemie International Edition, 60(18), 9828-9851. https://doi.org/10.1002/anie.202003053
Transparent, aldehyde-free chitosan aerogel
Takeshita, S., Zhao, S., & Malfait, W. J. (2021). Transparent, aldehyde-free chitosan aerogel. Carbohydrate Polymers, 251, 117089 (8 pp.). https://doi.org/10.1016/j.carbpol.2020.117089
Superinsulation materials for energy-efficient train envelopes
Wernery, J., Brunner, S., Weber, B., Knuth, C., & Koebel, M. M. (2021). Superinsulation materials for energy-efficient train envelopes. Applied Sciences, 11(7), 2939 (19 pp.). https://doi.org/10.3390/app11072939
Mapping of the conditions (components & assemblies)
Adl-Zarrabi, B., Mukhopadhyaya, P., Johansson, P., Brunner, S., Galliano, R., Heinemann, U., … Chen, Z. (2020). Mapping of the conditions (components & assemblies). In B. Adl-Zarrabi & P. Johansson (Eds.), Long-term performance of super-insulating-materials in building components & systems. Report of subtask III: practical applications retrofitting at the building scale - field scale (pp. 9-48). CSTB.
Monolithic resorcinol-formaldehyde alcogels and their corresponding nitrogen-doped activated carbons
Civioc, R., Lattuada, M., Koebel, M. M., & Galmarini, S. (2020). Monolithic resorcinol-formaldehyde alcogels and their corresponding nitrogen-doped activated carbons. Journal of Sol-Gel Science and Technology, 95, 719-732. https://doi.org/10.1007/s10971-020-05288-x
Aerogel materials for heritage buildings: materials, properties and case studies
Ganobjak, M., Brunner, S., & Wernery, J. (2020). Aerogel materials for heritage buildings: materials, properties and case studies. Journal of Cultural Heritage, 42, 81-98. https://doi.org/10.1016/j.culher.2019.09.007
Strong, machinable and insulating chitosan-urea aerogels: towards ambient pressure drying of biopolymer aerogel monoliths
Guerrero Alburquerque, N., Zhao, S., Adilien, N., Koebel, M. M., Lattuada, M., & Malfait, W. J. (2020). Strong, machinable and insulating chitosan-urea aerogels: towards ambient pressure drying of biopolymer aerogel monoliths. ACS Applied Materials and Interfaces, 12(19), 22037-22049. https://doi.org/10.1021/acsami.0c03047
Vacuum insulation panels
Heinemann, U., Brunner, S., Kucukpinar, E., Jelle, B. P., Sprengard, C., Mukhopadhyaya, P., … He, Y. (2020). Vacuum insulation panels. In U. Heinemann (Ed.), Long-term performance of super-insulating materials in building components and systems. Report of subtask I: state of the art and case studies (pp. 41-102). CSTB.
The influence of the ammonia concentration and the water content on the water sorption behavior of ambient pressure dried silica xerogels
Huber, L., Paz Comesaña, S., & Koebel, M. M. (2020). The influence of the ammonia concentration and the water content on the water sorption behavior of ambient pressure dried silica xerogels. Journal of Sol-Gel Science and Technology, 96, 197-206. https://doi.org/10.1007/s10971-020-05349-1
 

Pages