| Plasma gas conversion in non-equilibrium conditions
Hegemann, D., Navascués, P., & Snoeckx, R. (2025). Plasma gas conversion in non-equilibrium conditions. International Journal of Hydrogen Energy, 100, 548-555. https://doi.org/10.1016/j.ijhydene.2024.12.351 |
| Reprocessable flame retardant amino-ester thermoset
Hervieu, C., Sekar, A., Poilvet, G., Dul, S., Lehner, S., Jovic, M., … Gaan, S. (2025). Reprocessable flame retardant amino-ester thermoset. Chemical Engineering Journal, 503, 158190 (10 pp.). https://doi.org/10.1016/j.cej.2024.158190 |
| Mining the atmosphere: a concrete solution to global warming
Lura, P., Lunati, I., Desing, H., Heuberger, M., Bach, C., & Richner, P. (2025). Mining the atmosphere: a concrete solution to global warming. Resources, Conservation and Recycling, 212, 107968 (13 pp.). https://doi.org/10.1016/j.resconrec.2024.107968 |
| In-situ generated SiO<sub>2</sub> nanoparticles for heat release reduction and smoke suppression in unsaturated polyester composites
Sekar, A., Chauvet, N., Lehner, S., Jovic, M., Dul, S., Rupper, P., & Gaan, S. (2025). In-situ generated SiO2 nanoparticles for heat release reduction and smoke suppression in unsaturated polyester composites. Polymer Degradation and Stability, 231, 111095 (14 pp.). https://doi.org/10.1016/j.polymdegradstab.2024.111095 |
| Metal-organic frameworks: a solution for greener polymeric materials with low fire hazards
Sun, X., Miao, W., Pan, Y. T., Song, P., Gaan, S., Ibarra, L. H., & Yang, R. (2025). Metal-organic frameworks: a solution for greener polymeric materials with low fire hazards. Advanced Sustainable Systems, 2400768 (17 pp.). https://doi.org/10.1002/adsu.202400768 |
| Improving poly(lactic acid) fire performances via blending with benzoxazine
Augé, M. O., Roncucci, D., Bonnet, F., Bourbigot, S., Gaan, S., & Fontaine, G. (2024). Improving poly(lactic acid) fire performances via blending with benzoxazine. Polymer Degradation and Stability, 230, 111032 (17 pp.). https://doi.org/10.1016/j.polymdegradstab.2024.111032 |
| Recycling of flame retardant polymers: current technologies and future perspectives
Bifulco, A., Chen, J., Sekar, A., Klingler, W. W., Gooneie, A., & Gaan, S. (2024). Recycling of flame retardant polymers: current technologies and future perspectives. Journal of Materials Science and Technology, 199, 156-183. https://doi.org/10.1016/j.jmst.2024.02.039 |
| Recycling of flame-retardant polymeric materials
Bifulco, A., Chen, J., Sekar, A., Klingler, W., Gooneie, A., & Gaan, S. (2024). Recycling of flame-retardant polymeric materials. In C. A. Wilkie & A. B. Morgan (Eds.), Fire retardancy of polymeric materials (pp. 584-606). https://doi.org/10.1201/584 9781003380689-24 |
| Sol-gel chemistry approaches for the manufacturing of innovative functional composites for the aerospace sector
Bifulco, A., Imparato, C., Passaro, J., Malucelli, G., Gaan, S., & Aronne, A. (2024). Sol-gel chemistry approaches for the manufacturing of innovative functional composites for the aerospace sector. In Journal of physics: conference series: Vol. 2716. 13th EASN international conference on: innovation in aviation & space for opening new horizons (p. 012035 (8 pp.). https://doi.org/10.1088/1742-6596/2716/1/012035 |
| Thermal decomposition of flame retardant polymers
Bifulco, A., Gaan, S., Price, D., & Horrocks, A. R. (2024). Thermal decomposition of flame retardant polymers. In C. A. Wilkie & A. B. Morgan (Eds.), Fire retardancy of polymeric materials (pp. 11-35). https://doi.org/10.1201/9781003380689-2 |
| Developing flame retardant solutions for partially aromatic polyamide with phosphine oxides
Carbone, S., Drigo, N., Huang, K., Lehner, S., Jovic, M., Bifulco, A., … Gaan, S. (2024). Developing flame retardant solutions for partially aromatic polyamide with phosphine oxides. Materials and Design, 243, 113080 (9 pp.). https://doi.org/10.1016/j.matdes.2024.113080 |
| Mechanical recycling of PET containing mixtures of phosphorus flame retardants
Chen, J., Dul, S., Lehner, S., Jovic, M., Gaan, S., Heuberger, M., … Gooneie, A. (2024). Mechanical recycling of PET containing mixtures of phosphorus flame retardants. Journal of Materials Science and Technology, 194, 167-179. https://doi.org/10.1016/j.jmst.2024.01.035 |
| Reusable magnetic mixture of CuFe<sub>2</sub>O<sub>4</sub>-Fe<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> for photocatalytic degradation of pesticides in water
Danilian, D., Bundrück, F. M., Kikas, A., Käämbre, T., Mändar, H., Lehner, S., … Pärna, R. (2024). Reusable magnetic mixture of CuFe2O4-Fe2O3 and TiO2 for photocatalytic degradation of pesticides in water. RSC Advances, 14(18), 12337-12348. https://doi.org/10.1039/d4ra00094c |
| Bicomponent melt-spinning of filaments for material extrusion 3D printing
Dul, S., Perret, E., & Hufenus, R. (2024). Bicomponent melt-spinning of filaments for material extrusion 3D printing. In C. Binetruy & F. Jacquemin (Eds.), Vol. 3. Materials and structural behavior-Simulation & testing. Proceedings of the 21st European conference on composite materials (pp. 295-300). European Society for Composite Materials (ESCM); Ecole Centrale de Nantes. |
| Bicomponent melt-spinning of filaments for material extrusion 3D printing
Dul, S., Perret, E., & Hufenus, R. (2024). Bicomponent melt-spinning of filaments for material extrusion 3D printing. Additive Manufacturing, 85, 104165 (13 pp.). https://doi.org/10.1016/j.addma.2024.104165 |
| Avoiding dust contamination by near-plasma chemical surface engineering
Hegemann, D., Góra, M., Kalemi, F., & Navascués, P. (2024). Avoiding dust contamination by near-plasma chemical surface engineering. Materials Today Nano, 27, 100503 (6 pp.). https://doi.org/10.1016/j.mtnano.2024.100503 |
| PVD-Beschichtungen ermöglichen textile Kabel und Sensoren: Prozesskontrolle durch angepasste Energiebereiche
Hegemann, D., & Amberg, M. (2024). PVD-Beschichtungen ermöglichen textile Kabel und Sensoren: Prozesskontrolle durch angepasste Energiebereiche. Vakuum in Forschung und Praxis, 36(3), 34-38. https://doi.org/10.1002/vipr.202400819 |
| Enabling simultaneous reprocessability and fire protection via incorporation of phosphine oxide monomer in epoxy vitrimer
Huang, Z., Klingler, W. W., Roncucci, D., Polisi, C., Rougier, V., Lehner, S., … Gaan, S. (2024). Enabling simultaneous reprocessability and fire protection via incorporation of phosphine oxide monomer in epoxy vitrimer. Journal of Materials Science and Technology, 196, 224-236. https://doi.org/10.1016/j.jmst.2024.01.062 |
| Core-shell DOPO/caramel nano-polymer with desirable UV shielding and flame retardancy for polyamide 6 fabric
Jin, W. J., Cheng, X. W., Ma, S. N., Li, L., Wu, R. K., & Guan, J. P. (2024). Core-shell DOPO/caramel nano-polymer with desirable UV shielding and flame retardancy for polyamide 6 fabric. Chemical Engineering Journal, 488, 151125 (9 pp.). https://doi.org/10.1016/j.cej.2024.151125 |
| Edible squid ink proteoglycans as a multifunctional sustainable additive for silk coatings: fire protection, UV shielding and as a colorant
Jin, W. J., He, W. L., Lehner, S., Cheng, X. W., Gaan, S., & Guan, J. P. (2024). Edible squid ink proteoglycans as a multifunctional sustainable additive for silk coatings: fire protection, UV shielding and as a colorant. Chemical Engineering Journal, 495, 153320 (11 pp.). https://doi.org/10.1016/j.cej.2024.153320 |