Active Filters

  • (-) … = empa-units:33
Search Results 1 - 20 of 475

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Sodium plating from Na‐<em>β</em>"‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries
Bay, M. ‐C., Wang, M., Grissa, R., Heinz, M. V. F., Sakamoto, J., & Battaglia, C. (2020). Sodium plating from Na‐β"‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Advanced Energy Materials, 10(3), 1902899 (8 pp.). https://doi.org/10.1002/aenm.201902899
Crystallization of <em>closo</em>-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries
Duchêne, L., Kim, D. H., Song, Y. B., Jun, S., Moury, R., Remhof, A., … Battaglia, C. (2020). Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries. Energy Storage Materials, 26, 543-549. https://doi.org/10.1016/j.ensm.2019.11.027
Status and prospects of hydroborate electrolytes for all-solid-state batteries
Duchêne, L., Remhof, A., Hagemann, H., & Battaglia, C. (2020). Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Materials, 25, 782-794. https://doi.org/10.1016/j.ensm.2019.08.032
Tailoring thermoelectric properties of Zr<sub>0.43</sub>Hf<sub>0.57</sub>NiSn half-Heusler compound by defect engineering
Gałązka, K., Xie, W., Populoh, S., Aguirre, M. H., Yoon, S., Büttner, G., & Weidenkaff, A. (2020). Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Metals. https://doi.org/10.1007/s12598-020-01392-7
A review of the MSCA ITN ECOSTORE - novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity
Hadjixenophontos, E., Dematteis, E. M., Berti, N., Wołczyk, A. R., Huen, P., Brighi, M., … Heere, M. (2020). A review of the MSCA ITN ECOSTORE - novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity. Inorganics, 8(3), 17 (71 pp.). https://doi.org/10.3390/inorganics8030017
BaTiO<sub>3</sub> nanotubes by co-axial electrospinning: rheological and microstructural investigations
Hedayati, M., Taheri-Nassaj, E., Yourdkhani, A., Borlaf, M., Zhang, J., Calame, M., … Clemens, F. J. (2020). BaTiO3 nanotubes by co-axial electrospinning: rheological and microstructural investigations. Journal of the European Ceramic Society, 40(4), 1269-1279. https://doi.org/10.1016/j.jeurceramsoc.2019.11.078
Conformal Cu coating on electrospun nanofibers for 3D electro‐conductive networks
Jiang, F., Ju, W., Pan, Z., Lin, L., Yue, Y., Zhao, Y. ‐B., … Wang, J. (2020). Conformal Cu coating on electrospun nanofibers for 3D electro‐conductive networks. Advanced Electronic Materials, 6(2), 1900767 (11 pp.). https://doi.org/10.1002/aelm.201900767
Large planar Na-β"-Al<sub>2</sub>O<sub>3</sub> solid electrolytes for next generation Na-Batteries
Ligon, S. C., Bay, M. ‐C., Heinz, M. V. F., Battaglia, C., Graule, T., & Blugan, G. (2020). Large planar Na-β"-Al2O3 solid electrolytes for next generation Na-Batteries. Materials, 13(2), 433 (10 pp.). https://doi.org/10.3390/ma13020433
Performance analysis of Na-β"-Al<sub>2</sub>O<sub>3</sub>/YSZ solid electrolytes produced by conventional sintering and by vapor conversion of α-Al<sub>2</sub>O<sub>3</sub>/YSZ
Ligon, S. C., Blugan, G., Bay, M. C., Battaglia, C., Heinz, M. V. F., & Graule, T. (2020). Performance analysis of Na-β"-Al2O3/YSZ solid electrolytes produced by conventional sintering and by vapor conversion of α-Al2O3/YSZ. Solid State Ionics, 345, 115169 (9 pp.). https://doi.org/10.1016/j.ssi.2019.115169
<em>Nido</em>-Borate/<em>Closo</em>-borate mixed-anion electrolytes for all-solid-state batteries
Payandeh, S. H., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., … Battaglia, C. (2020). Nido-Borate/Closo-borate mixed-anion electrolytes for all-solid-state batteries. Chemistry of Materials, 32, 1101-1110. https://doi.org/10.1021/acs.chemmater.9b03933
Solid-state magnesium-ion conductors
Payandeh, S., Remhof, A., & Battaglia, C. (2020). Solid-state magnesium-ion conductors. In M. Fichtner (Ed.), Energy and environment series: Vol. 23. Magnesium batteries: research and applications (pp. 60-78). https://doi.org/10.1039/9781788016407-00060
Hydrogen sorption and reversibility of the LiBH<sub>4</sub>-KBH<sub>4</sub> eutectic system confined in a CMK-3 type carbon via melt infiltration
Peru, F., Payandeh, S. H., Charalambopoulou, G., Jensen, T. R., & Steriotis, T. (2020). Hydrogen sorption and reversibility of the LiBH4-KBH4 eutectic system confined in a CMK-3 type carbon via melt infiltration. C - Journal of Carbon Research, 6(2), 19 (10 pp.). https://doi.org/10.3390/c6020019
Facile and universal method for the synthesis of metal nanoparticles supported onto carbon foams
Sehaqui, H., Brahmi, Y., & Ju, W. (2020). Facile and universal method for the synthesis of metal nanoparticles supported onto carbon foams. Cellulose, 27(1), 263-271. https://doi.org/10.1007/s10570-019-02805-2
Electrochemical oxidative stability of hydroborate-based solid-state electrolytes
Asakura, R., Duchêne, L., Kühnel, R. S., Remhof, A., Hagemann, H., & Battaglia, C. (2019). Electrochemical oxidative stability of hydroborate-based solid-state electrolytes. ACS Applied Energy Materials, 2(9), 6924-6930. https://doi.org/10.1021/acsaem.9b01487
Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-<em>β</em>"-alumina ceramics
Bay, M. C., Heinz, M. V. F., Figi, R., Schreiner, C., Basso, D., Zanon, N., … Battaglia, C. (2019). Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-β"-alumina ceramics. ACS Applied Energy Materials, 2(1), 687-693. https://doi.org/10.1021/acsaem.8b01715
Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below -10 °C
Becker, M., Kühnel, R. S., & Battaglia, C. (2019). Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below -10 °C. Chemical Communications, 55(80), 12032-12035. https://doi.org/10.1039/C9CC04495G
Analytical approximation for the frequency dependent conductivity in ionic conductors
Cuervo-Reyes, E., Roedern, E., Yun, Y., & Battaglia, C. (2019). Analytical approximation for the frequency dependent conductivity in ionic conductors. Electrochimica Acta, 297, 435-442. https://doi.org/10.1016/j.electacta.2018.11.082
Spectroscopic properties of Dy<sup>3+</sup> - and Dy<sup>3+</sup> , B<sup>3+</sup> - doped SrAl<sub>2</sub>O<sub>4</sub>
Delgado, T., Ajoubipour, S., Afshani, J., Yoon, S., Walfort, B., & Hagemann, H. (2019). Spectroscopic properties of Dy3+ - and Dy3+ , B3+ - doped SrAl2O4. Optical Materials, 89, 268-275. https://doi.org/10.1016/j.optmat.2019.01.013
Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm<sup>2</sup> LaTiO<sub>2</sub>N photoanodes
Dilger, S., Trottmann, M., & Pokrant, S. (2019). Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm2 LaTiO2N photoanodes. ChemSusChem, 12(9), 1931-1938. https://doi.org/10.1002/cssc.201802645
Ionic conduction mechanism in the Na&lt;sub&gt;2&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)&lt;sub&gt;0.5&lt;/sub&gt;(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;)&lt;sub&gt;0.5 &lt;/sub&gt;&lt;em&gt;closo&lt;/em&gt;-borate
Duchêne, L., Lunghammer, S., Burankova, T., Liao, W. C., Embs, J. P., Copéret, C., … Battaglia, C. (2019). Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: interplay of disorder and ion–ion interactions. Chemistry of Materials, 31(9), 3449-3460. https://doi.org/10.1021/acs.chemmater.9b00610
 

Pages