Active Filters

  • (-) … = empa-units:37
  • (-) Empa Authors = Zhao, Kun
Search Results 1 - 12 of 12
  • RSS Feed
Select Page
Direct CO<sub>2</sub> capture and reduction to high-end chemicals with tetraalkylammonium borohydrides
Lombardo, L., Ko, Y., Zhao, K., Yang, H., & Züttel, A. (2021). Direct CO2 capture and reduction to high-end chemicals with tetraalkylammonium borohydrides. Angewandte Chemie International Edition, 60(17), 9580-9589. https://doi.org/10.1002/anie.202100447
Hydrogen storage by reduction of CO<sub>2</sub> to synthetic hydrocarbons
Zhao, K., Luo, W., Gallandat, N., Zhang, J., & Züttel, A. (2021). Hydrogen storage by reduction of CO2 to synthetic hydrocarbons. Chimia, 75(3), 156-162. https://doi.org/10.2533/CHIMIA.2021.156
CO<sub>2</sub> hydrogenation over unsupported Fe-Co nanoalloy catalysts
Calizzi, M., Mutschler, R., Patelli, N., Migliori, A., Zhao, K., Pasquini, L., & Züttel, A. (2020). CO2 hydrogenation over unsupported Fe-Co nanoalloy catalysts. Nanomaterials, 10(7), 1360 (12 pp.). https://doi.org/10.3390/nano10071360
Thermal stability of size-selected copper nanoparticles: effect of size, support and CO<sub>2</sub> hydrogenation atmosphere
Li, M., Borsay, A., Dakhchoune, M., Zhao, K., Luo, W., & Züttel, A. (2020). Thermal stability of size-selected copper nanoparticles: effect of size, support and CO2 hydrogenation atmosphere. Applied Surface Science, 510, 145439 (9 pp.). https://doi.org/10.1016/j.apsusc.2020.145439
Solvent- and catalyst-free carbon dioxide capture and reduction to formate with borohydride ionic liquid
Lombardo, L., Yang, H., Zhao, K., Dyson, P. J., & Züttel, A. (2020). Solvent- and catalyst-free carbon dioxide capture and reduction to formate with borohydride ionic liquid. ChemSusChem, 13(8), 2025-2031. https://doi.org/10.1002/cssc.201903514
Electrochemical reconstruction of ZnO for selective reduction of CO<sub>2</sub> to CO
Luo, W., Zhang, Q., Zhang, J., Moioli, E., Zhao, K., & Züttel, A. (2020). Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Applied Catalysis B: Environmental, 273, 119060 (9 pp.). https://doi.org/10.1016/j.apcatb.2020.119060
Imaging catalysis: operando investigation of the CO<sub>2</sub> hydrogenation reaction dynamics by means of infrared thermography
Mutschler, R., Moioli, E., Zhao, K., Lombardo, L., Oveisi, E., Porta, A., … Züttel, A. (2020). Imaging catalysis: operando investigation of the CO2 hydrogenation reaction dynamics by means of infrared thermography. ACS Catalysis, 10(3), 1721-1730. https://doi.org/10.1021/acscatal.9b04475
A combined diffuse reflectance infrared Fourier transform spectroscopy-mass spectroscopy-gas chromatography for the <em>operando</em> study of the heterogeneously catalyzed CO<sub>2</sub> hydrogenation over transition metal-based catalysts
Zhao, K., Zhang, J., Luo, W., Li, M., Moioli, E., Spodaryk, M., & Züttel, A. (2020). A combined diffuse reflectance infrared Fourier transform spectroscopy-mass spectroscopy-gas chromatography for the operando study of the heterogeneously catalyzed CO2 hydrogenation over transition metal-based catalysts. Review of Scientific Instruments, 91(7), 074102 (9 pp.). https://doi.org/10.1063/1.5144497
Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Co<sub>x</sub>(CoO)<sub>1–</sub><sub>x</sub> catalyst for CO<sub>2</sub> hydrogenation
Zhao, K., Calizzi, M., Moioli, E., Li, M., Borsay, A., Lombardo, L., … Züttel, A. (2020). Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Cox(CoO)1–x catalyst for CO2 hydrogenation. Journal of Energy Chemistry, 53, 241-250. https://doi.org/10.1016/j.jechem.2020.05.025
The role of malachite nanorods for the electrochemical reduction of CO<sub>2</sub> to C<sub>2</sub> hydrocarbons
Spodaryk, M., Zhao, K., Zhang, J., Oveisi, E., & Züttel, A. (2019). The role of malachite nanorods for the electrochemical reduction of CO2 to C2 hydrocarbons. Electrochimica Acta, 297, 55-60. https://doi.org/10.1016/j.electacta.2018.11.124
Identifying reaction species by evolutionary fitting and kinetic analysis: an example of CO<sub>2</sub> hydrogenation in DRIFTS
Zhao, K., Wang, L., Moioli, E., Calizzi, M., & Züttel, A. (2019). Identifying reaction species by evolutionary fitting and kinetic analysis: an example of CO2 hydrogenation in DRIFTS. Journal of Physical Chemistry C, 123(14), 8785-8792. https://doi.org/10.1021/acs.jpcc.8b11105
In situ control of the adsorption species in CO<sub>2</sub> hydrogenation: determination of intermediates and byproducts
Zhao, K., Wang, L., Calizzi, M., Moioli, E., & Züttel, A. (2018). In situ control of the adsorption species in CO2 hydrogenation: determination of intermediates and byproducts. Journal of Physical Chemistry C, 122(36), 20888-20893. https://doi.org/10.1021/acs.jpcc.8b06508