Active Filters

  • (-) … = empa-units:37
  • (-) Empa Authors = Moioli, Emanuele
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Electrochemical reconstruction of ZnO for selective reduction of CO<sub>2</sub> to CO
Luo, W., Zhang, Q., Zhang, J., Moioli, E., Zhao, K., & Züttel, A. (2020). Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Applied Catalysis B: Environmental, 273, 119060 (9 pp.). https://doi.org/10.1016/j.apcatb.2020.119060
A model-based comparison of Ru and Ni catalysts for the Sabatier reaction
Moioli, E., & Züttel, A. (2020). A model-based comparison of Ru and Ni catalysts for the Sabatier reaction. Sustainable Energy and Fuels, 4(3), 1396-1408. https://doi.org/10.1039/c9se00787c
Synthesis of grid compliant substitute natural gas from a representative biogas mixture in a hybrid Ni/Ru catalysed reactor
Moioli, E., Mutschler, R., Borsay, A., Calizzi, M., & Züttel, A. (2020). Synthesis of grid compliant substitute natural gas from a representative biogas mixture in a hybrid Ni/Ru catalysed reactor. Chemical Engineering Science: X, 8, 100078 (8 pp.). https://doi.org/10.1016/j.cesx.2020.100078
Imaging catalysis: operando investigation of the CO<sub>2</sub> hydrogenation reaction dynamics by means of infrared thermography
Mutschler, R., Moioli, E., Zhao, K., Lombardo, L., Oveisi, E., Porta, A., … Züttel, A. (2020). Imaging catalysis: operando investigation of the CO2 hydrogenation reaction dynamics by means of infrared thermography. ACS Catalysis, 10(3), 1721-1730. https://doi.org/10.1021/acscatal.9b04475
A combined diffuse reflectance infrared Fourier transform spectroscopy-mass spectroscopy-gas chromatography for the <em>operando</em> study of the heterogeneously catalyzed CO<sub>2</sub> hydrogenation over transition metal-based catalysts
Zhao, K., Zhang, J., Luo, W., Li, M., Moioli, E., Spodaryk, M., & Züttel, A. (2020). A combined diffuse reflectance infrared Fourier transform spectroscopy-mass spectroscopy-gas chromatography for the operando study of the heterogeneously catalyzed CO2 hydrogenation over transition metal-based catalysts. Review of Scientific Instruments, 91(7), 074102 (9 pp.). https://doi.org/10.1063/1.5144497
Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Co<sub>x</sub>(CoO)<sub>1–</sub><sub>x</sub> catalyst for CO<sub>2</sub> hydrogenation
Zhao, K., Calizzi, M., Moioli, E., Li, M., Borsay, A., Lombardo, L., … Züttel, A. (2020). Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Cox(CoO)1–x catalyst for CO2 hydrogenation. Journal of Energy Chemistry, 53, 241-250. https://doi.org/10.1016/j.jechem.2020.05.025
Model based determination of the optimal reactor concept for Sabatier reaction in small-scale applications over Ru/Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;
Moioli, E., Gallandat, N., & Züttel, A. (2019). Model based determination of the optimal reactor concept for Sabatier reaction in small-scale applications over Ru/Al2O3. Chemical Engineering Journal, 375, 121954 (10 pp.). https://doi.org/10.1016/j.cej.2019.121954
Parametric sensitivity in the Sabatier reaction over Ru/Al<small><sub>2</sub></small>O<small><sub>3</sub></small>-theoretical determination of the minimal requirements for reactor activation
Moioli, E., Gallandat, N., & Züttel, A. (2019). Parametric sensitivity in the Sabatier reaction over Ru/Al2O3-theoretical determination of the minimal requirements for reactor activation. Reaction Chemistry & Engineering, 4(1), 100-111. https://doi.org/10.1039/c8re00133b
Renewable energy storage via CO<sub>2</sub> and H<sub>2</sub> conversion to methane and methanol: assessment for small scale applications
Moioli, E., Mutschler, R., & Züttel, A. (2019). Renewable energy storage via CO2 and H2 conversion to methane and methanol: assessment for small scale applications. Renewable and Sustainable Energy Reviews, 107, 497-506. https://doi.org/10.1016/j.rser.2019.03.022
Modelling the CO&lt;sub&gt;2&lt;/sub&gt; hydrogenation reaction over Co, Ni and Ru/Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;
Mutschler, R., Moioli, E., & Züttel, A. (2019). Modelling the CO2 hydrogenation reaction over Co, Ni and Ru/Al2O3. Journal of Catalysis, 375, 193-201. https://doi.org/10.1016/j.jcat.2019.05.023
Efficient base-metal NiMn/TiO&lt;sub&gt;2&lt;/sub&gt; catalyst for CO&lt;sub&gt;2&lt;/sub&gt; methanation
Vrijburg, W. L., Moioli, E., Chen, W., Zhang, M., Terlingen, B. J. P., Zijlstra, B., … Hensen, E. J. M. (2019). Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation. ACS Catalysis, 9(9), 7823-7839. https://doi.org/10.1021/acscatal.9b01968
Identifying reaction species by evolutionary fitting and kinetic analysis: an example of CO<sub>2</sub> hydrogenation in DRIFTS
Zhao, K., Wang, L., Moioli, E., Calizzi, M., & Züttel, A. (2019). Identifying reaction species by evolutionary fitting and kinetic analysis: an example of CO2 hydrogenation in DRIFTS. Journal of Physical Chemistry C, 123(14), 8785-8792. https://doi.org/10.1021/acs.jpcc.8b11105
CO<sub>2</sub> hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al<sub>2</sub>O<sub>3</sub> supported Ru: Comparison and determination of the activation energies
Mutschler, R., Moioli, E., Luo, W., Gallandat, N., & Züttel, A. (2018). CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies. Journal of Catalysis, 366, 139-149. https://doi.org/10.1016/j.jcat.2018.08.002
Fast real time and quantitative gas analysis method for the investigation of the CO&lt;sub&gt;2&lt;/sub&gt; reduction reaction mechanism
Mutschler, R., Luo, W., Moioli, E., & Züttel, A. (2018). Fast real time and quantitative gas analysis method for the investigation of the CO2 reduction reaction mechanism. Review of Scientific Instruments, 89(11), 114102 (8 pp.). https://doi.org/10.1063/1.5047402
In situ control of the adsorption species in CO<sub>2</sub> hydrogenation: determination of intermediates and byproducts
Zhao, K., Wang, L., Calizzi, M., Moioli, E., & Züttel, A. (2018). In situ control of the adsorption species in CO2 hydrogenation: determination of intermediates and byproducts. Journal of Physical Chemistry C, 122(36), 20888-20893. https://doi.org/10.1021/acs.jpcc.8b06508