Active Filters

  • (-) … = empa-units:8
Search Results 1 - 20 of 414

Pages

  • RSS Feed
Select Page
Ambipolar charge transfer of larger fullerenes enabled by the modulated surface potential of h-BN/Rh(111)
Bommert, M., Schuler, B., Pignedoli, C. A., Widmer, R., & Gröning, O. (2024). Ambipolar charge transfer of larger fullerenes enabled by the modulated surface potential of h-BN/Rh(111). Carbon, 216, 118592 (8 pp.). https://doi.org/10.1016/j.carbon.2023.118592
Continuous carrier-envelope phase control for terahertz-driven scanning probe microscopy of 2D semiconductors
Allerbeck, J., Kuttruff, J., Bobzien, L., Huberich, L., Tsarev, M., & Schuler, B. (2023). Continuous carrier-envelope phase control for terahertz-driven scanning probe microscopy of 2D semiconductors. In International conference on infrared and millimeter waves. IRMMW-THz 2023 48th international conference on infrared millimeter and terahertz waves (p. (2 pp.). https://doi.org/10.1109/IRMMW-THz57677.2023.10299310
Efficient and continuous carrier-envelopepe phase control for terahertz lightwave-driven scanning probe microscopy
Allerbeck, J., Kuttruff, J., Bobzien, L., Huberich, L., Tsarev, M., & Schuler, B. (2023). Efficient and continuous carrier-envelopepe phase control for terahertz lightwave-driven scanning probe microscopy. ACS Photonics, 10(11), 3888-3895. https://doi.org/10.1021/acsphotonics.3c00555
<em>In situ</em> observation of the on-surface thermal dehydrogenation of n-octane on Pt(111)
Arribas, D., Villalobos-Vilda, V., Tosi, E., Lacovig, P., Baraldi, A., Bignardi, L., … Merino, P. (2023). In situ observation of the on-surface thermal dehydrogenation of n-octane on Pt(111). Nanoscale, 15(35), 14458-14467. https://doi.org/10.1039/d3nr02564k
Steering large magnetic exchange coupling in nanographenes near the closed-shell to open-shell transition
Biswas, K., Soler, D., Mishra, S., Chen, Q., Yao, X., Sánchez-Grande, A., … Écija, D. (2023). Steering large magnetic exchange coupling in nanographenes near the closed-shell to open-shell transition. Journal of the American Chemical Society, 145(5), 2968-2974. https://doi.org/10.1021/jacs.2c11431
Electronic decoupling and single‐molecule charging of C<sub>60</sub> on h‐BN/Rh(111)
Bommert, M., Günzburger, G., Widmer, R., Schuler, B., & Gröning, O. (2023). Electronic decoupling and single‐molecule charging of C60 on h‐BN/Rh(111). Advanced Physics Research, 22(2), 2300029 (9 pp.). https://doi.org/10.1002/apxr.202300029
On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges
Borin Barin, G., Di Giovannantonio, M., Lohr, T. G., Mishra, S., Kinikar, A., Perrin, M., … Ruffieux, P. (2023). On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges. Nanoscale, 15(41), 16766-16774. https://doi.org/10.1039/D3NR03736C
How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
Bosoni, E., Beal, L., Bercx, M., Blaha, P., Blügel, S., Bröder, J., … Pizzi, G. (2023). How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nature Reviews Physics. https://doi.org/10.1038/s42254-023-00655-3
MoRe electrodes with 10 nm nanogaps for electrical contact to atomically precise graphene nanoribbons
Bouwmeester, D., Ghiasi, T. S., Borin Barin, G., Müllen, K., Ruffieux, P., Fasel, R., & van der Zant, H. S. J. (2023). MoRe electrodes with 10 nm nanogaps for electrical contact to atomically precise graphene nanoribbons. ACS Applied Nano Materials, 6(15), 13935-13944. https://doi.org/10.1021/acsanm.3c01630
Density-matrix renormalization group: a pedagogical introduction
Catarina, G., & Murta, B. (2023). Density-matrix renormalization group: a pedagogical introduction. European Physical Journal B: Condensed Matter and Complex Systems, 96(8), 111 (30 pp.). https://doi.org/10.1140/epjb/s10051-023-00575-2
On‐surface interchain coupling and skeletal rearrangement of indenofluorene polymers
Chen, Q., Di Giovannantonio, M., Eimre, K., Urgel, J. I., Ruffieux, P., Pignedoli, C. A., … Narita, A. (2023). On‐surface interchain coupling and skeletal rearrangement of indenofluorene polymers. Macromolecular Chemistry and Physics, 2300345 (7 pp.). https://doi.org/10.1002/macp.202300345
Quantifying alignment and quality of graphene nanoribbons: a polarized Raman spectroscopy approach
Darawish, R., Overbeck, J., Müllen, K., Calame, M., Ruffieux, P., Fasel, R., & Barin, G. B. (2023). Quantifying alignment and quality of graphene nanoribbons: a polarized Raman spectroscopy approach. Carbon. https://doi.org/10.1016/j.carbon.2023.118688
Efficient and accurate defect level modeling in monolayer MoS<sub>2</sub> via GW+DFT with open boundary conditions
Gandus, G., Lee, Y., Deuschle, L., Passerone, D., & Luisier, M. (2023). Efficient and accurate defect level modeling in monolayer MoS2 via GW+DFT with open boundary conditions. Solid State Electronics, 199, 108499 (44 pp.). https://doi.org/10.1016/j.sse.2022.108499
Platinum contacts for 9-atom-wide armchair graphene nanoribbons
Hsu, C., Rohde, M., Borin Barin, G., Gandus, G., Passerone, D., Luisier, M., … El Abbassi, M. (2023). Platinum contacts for 9-atom-wide armchair graphene nanoribbons. Applied Physics Letters, 122(17), 173104 (6 pp.). https://doi.org/10.1063/5.0143663
Edge contacts to atomically precise graphene nanoribbons
Huang, W., Braun, O., Indolese, D. I., Borin Barin, G., Gandus, G., Stiefel, M., … Perrin, M. L. (2023). Edge contacts to atomically precise graphene nanoribbons. ACS Nano. https://doi.org/10.1021/acsnano.3c00782
Ultrafast control of exciton dynamics by optically-induced thermionic carrier injection in a metal-semiconductor heterojunction
Keller, K. R., Rojas-Aedo, R., Zhang, H., Schweizer, P., Allerbeck, J., Brida, D., … Maccaferri, N. (2023). Ultrafast control of exciton dynamics by optically-induced thermionic carrier injection in a metal-semiconductor heterojunction. In I. Rendina, L. Petti, D. Sagnelli, & G. Nenna (Eds.), Proceedings of SPIE: Vol. 12584. High-power, high-energy lasers and ultrafast optical technologies (p. 125840 (10 pp.). https://doi.org/10.1117/12.2665677
On‐surface synthesis of edge‐extended zigzag graphene nanoribbons
Kinikar, A., Xu, X., Di Giovannantonio, M., Gröning, O., Eimre, K., Pignedoli, C. A., … Fasel, R. (2023). On‐surface synthesis of edge‐extended zigzag graphene nanoribbons. Advanced Materials. https://doi.org/10.1002/adma.202306311
Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas
Kuttruff, J., Romanelli, M., Pedrueza-Villalmanzo, E., Allerbeck, J., Fregoni, J., Saavedra-Becerril, V., … Maccaferri, N. (2023). Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas. Nature Communications, 14, 3875 (10 pp.). https://doi.org/10.1038/s41467-023-39413-5
Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors
Lin, Y. C., Mutlu, Z., Borin Barin, G., Hong, Y., Llinas, J. P., Narita, A., … Bokor, J. (2023). Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors. Carbon, 205, 519-526. https://doi.org/10.1016/j.carbon.2023.01.054
Contact engineering for graphene nanoribbon devices
Mutlu, Z., Dinh, C., Borin Barin, G., Jacobse, P. H., Kumar, A., Polley, D., … Bokor, J. (2023). Contact engineering for graphene nanoribbon devices. Applied Physics Reviews, 10(4), 041412 (10 pp.). https://doi.org/10.1063/5.0172432
 

Pages