Active Filters

  • (-) Empa Authors = Rentsch, Daniel
  • (-) Keywords ≠ aqueous batteries
Search Results 1 - 20 of 108

Pages

  • RSS Feed
Select Page
<em>Aminobacter</em> sp. MSH1 mineralises the groundwater micropollutant 2,6-dichlorobenzamide through a unique chlorobenzoate catabolic pathway
Raes, B., Horemans, B., Rentsch, D., T'Syen, J., Ghequire, M. G. K., De Mot, R., … Springael, D. (2019). Aminobacter sp. MSH1 mineralises the groundwater micropollutant 2,6-dichlorobenzamide through a unique chlorobenzoate catabolic pathway. Environmental Science and Technology, 53(17), 10146-10156. https://doi.org/10.1021/acs.est.9b02021
<em>Nido</em>-Borate/<em>Closo</em>-borate mixed-anion electrolytes for all-solid-state batteries
Payandeh, S. H., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., … Battaglia, C. (2020). Nido-Borate/Closo-borate mixed-anion electrolytes for all-solid-state batteries. Chemistry of Materials, 32, 1101-1110. https://doi.org/10.1021/acs.chemmater.9b03933
<sup>1</sup>H,<sup>13</sup>C-HSQC HRMAS-NMR as a tool for investigating the quality of Fmoc-AA-Wang resins for SPPS
Stähelin, C., Dick, F., Ferrari, S., & Rentsch, D. (2009). 1H,13C-HSQC HRMAS-NMR as a tool for investigating the quality of Fmoc-AA-Wang resins for SPPS. Biopolymers: Vol. 92. (p. 372 (1 pp.). Presented at the 21st american peptide society symposium. Wiley.
2,2′:6′,2′′-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes
Schöller, K., Toncelli, C., Experton, J., Widmer, S., Rentsch, D., Vetushka, A., … Scherer, L. J. (2016). 2,2′:6′,2′′-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes. RSC Advances, 6(100), 97921-97930. https://doi.org/10.1039/C6RA23677D
<em>Nido</em>‐hydroborate‐based electrolytes for all‐solid‐state lithium batteries
Payandeh, S. H., Rentsch, D., Łodziana, Z., Asakura, R., Bigler, L., Černý, R., … Remhof, A. (2021). Nido‐hydroborate‐based electrolytes for all‐solid‐state lithium batteries. Advanced Functional Materials, 31(18), 2010046 (12 pp.). https://doi.org/10.1002/adfm.202010046
<sup>1</sup>H,<sup>13</sup>C-HSQC HRMAS-NMR as a tool for investigating the quality of Fmoc-AA-Wang resins for SPPS
Stähelin, C., Dick, F., Ferrari, S., & Rentsch, D. (2009). 1H,13C-HSQC HRMAS-NMR as a tool for investigating the quality of Fmoc-AA-Wang resins for SPPS. M. Lebl (Ed.) (p. 2 pp.). Presented at the Peptides: breaking away: proceedings of the 21st american peptide symposium. Prompt Scientific Publishing.
<sup>55</sup>Mn, <sup>13</sup>CO and <sup>55</sup>Mn,<sup>31</sup>P coupling constants of organomanganese complexes: comparison of NMR results from experiments in solution and in the solid state
Rentsch, D., Hany, R., & von Philipsborn, W. (1997). 55Mn, 13CO and 55Mn,31P coupling constants of organomanganese complexes: comparison of NMR results from experiments in solution and in the solid state. Magnetic resonance in chemistry, 35(12), 832-838. https://doi.org/10.1002/(SICI)1097-458X(199712)35:12<832::AID-OMR185>3.0.CO;2-S
A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture
Duchêne, L., Kühnel, R. S., Rentsch, D., Remhof, A., Hagemann, H., & Battaglia, C. (2017). A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chemical Communications, 53(30), 4195-4198. https://doi.org/10.1039/C7CC00794A
A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes
Yan, Y., Kühnel, R. S., Remhof, A., Duchêne, L., Cuervo Reyes, E., Rentsch, D., … Battaglia, C. (2017). A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes. Advanced Energy Materials, 7(19), 1700294 (7 pp.). https://doi.org/10.1002/aenm.201700294
A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by <i>Sphingomonas xenophaga</i> Bayram. <i>ipso</i>-hydroxylation and intramolecular rearrangement
Gabriel, F. L. P., Heidlberger, A., Rentsch, D., Giger, W., Guenther, K., & Kohler, H. P. E. (2005). A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram. ipso-hydroxylation and intramolecular rearrangement. Journal of Biological Chemistry, 280, 15526-15533. https://doi.org/10.1074/jbc.M413446200
A novel method for the synthesis of solvent-free Mg(B<SUB>3</SUB>H<SUB>8</SUB>)<SUB>2</SUB>
Huang, J., Yan, Y., Remhof, A., Zhang, Y., Rentsch, D., Au, Y. S., … Züttel, A. (2016). A novel method for the synthesis of solvent-free Mg(B3H8)2. Dalton Transactions, 45(9), 3687-3690. https://doi.org/10.1039/C5DT04517G
A novel strategy for reversible hydrogen storage in Ca(BH<SUB>4</SUB>)<SUB>2</SUB>
Yan, Y., Remhof, A., Rentsch, D., Züttel, A., Giri, S., & Jena, P. (2015). A novel strategy for reversible hydrogen storage in Ca(BH4)2. Chemical Communications, 51(55), 11008-11011. https://doi.org/10.1039/C5CC03605D
A simple HPLC-MS method for the quantitative determination of the composition of bacterial medium chain-length polyhydroxyalkanoates
Grubelnik, A., Wiesli, L., Furrer, P., Rentsch, D., Hany, R., & Meyer, V. R. (2008). A simple HPLC-MS method for the quantitative determination of the composition of bacterial medium chain-length polyhydroxyalkanoates. Journal of Separation Science, 31(10), 1739-1744. https://doi.org/10.1002/jssc.200800033
A thermodynamic and experimental study of the conditions of thaumasite formation
Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K., Rentsch, D., & Figi, R. (2008). A thermodynamic and experimental study of the conditions of thaumasite formation. Cement and Concrete Research, 38(3), 337-349. https://doi.org/10.1016/j.cemconres.2007.11.003
Abatement of polychoro-1,3-butadienes in aqueous solution by ozone, UV photolysis, and advanced oxidation processes (O<SUB>3</SUB>/H<SUB>2</SUB>O<SUB>2</SUB> and UV/H<SUB>2</SUB>O<SUB>2</SUB>)
Lee, M., Merle, T., Rentsch, D., Canonica, S., & von Gunten, U. (2017). Abatement of polychoro-1,3-butadienes in aqueous solution by ozone, UV photolysis, and advanced oxidation processes (O3/H2O2 and UV/H2O2). Environmental Science and Technology, 51(1), 497-505. https://doi.org/10.1021/acs.est.6b04506
Acid-base chemistry of aqueous aluminium nanoclusters
Banerjee, D., Studer, B., Rentsch, D., & Furrer, G. (2003). Acid-base chemistry of aqueous aluminium nanoclusters (pp. 496-497). Presented at the 7th Int. conference on the biogeochemistry of trace elements ( ICOBTE). .
Advanced Cu-Sn foam for selectively converting CO<sub>2</sub> to CO in aqueous solution
Zeng, J., Bejtka, K., Ju, W., Castellino, M., Chiodoni, A., Sacco, A., … Pirri, C. F. (2018). Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Applied Catalysis B: Environmental, 236, 475-482. https://doi.org/10.1016/j.apcatb.2018.05.056
Alkali–silica reaction: the influence of calcium on silica dissolution and the formation of reaction products
Leemann, A., Le Saout, G., Winnefeld, F., Rentsch, D., & Lothenbach, B. (2011). Alkali–silica reaction: the influence of calcium on silica dissolution and the formation of reaction products. Journal of the American Ceramic Society, 94(4), 1243-1249. https://doi.org/10.1111/j.1551-2916.2010.04202.x
All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels
Wang, J., Chiappone, A., Roppolo, I., Shao, F., Fantino, E., Lorusso, M., … Grützmacher, H. (2018). All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angewandte Chemie International Edition, 57(9), 2353-2356. https://doi.org/10.1002/anie.201710951
Aluminum incorporation into magnesium silicate hydrate (M-S-H)
Bernard, E., Lothenbach, B., Cau-Dit-Coumes, C., Pochard, I., & Rentsch, D. (2020). Aluminum incorporation into magnesium silicate hydrate (M-S-H). Cement and Concrete Research, 128, 105931 (15 pp.). https://doi.org/10.1016/j.cemconres.2019.105931
 

Pages