Active Filters

  • (-) Empa Authors = Aiyangar, Ameet K.
Search Results 1 - 19 of 19
  • RSS Feed
Select Page
Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer
Vallejos Baier, R., Contreras Raggio, J. I., Toro Arancibia, C., Bustamante, M., Pérez, L., Burda, I., … Vivanco, J. F. (2021). Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer. Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems, 123, 111945 (14 pp.). https://doi.org/10.1016/j.msec.2021.111945
Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics
Affolter, C., Kedzierska, J., Vielma, T., Weisse, B., & Aiyangar, A. (2020). Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics. Journal of Biomechanics, 102, 109681 (11 pp.). https://doi.org/10.1016/j.jbiomech.2020.109681
Sensitivity of musculoskeletal model-based lumbar spinal loading estimates to type of kinematic input and passive stiffness properties
Byrne, R. M., Aiyangar, A. K., & Zhang, X. (2020). Sensitivity of musculoskeletal model-based lumbar spinal loading estimates to type of kinematic input and passive stiffness properties. Journal of Biomechanics, 102, 109659 (11 pp.). https://doi.org/10.1016/j.jbiomech.2020.109659
In vivo changes in adjacent segment kinematics after lumbar decompression and fusion
Wawrose, R. A., LeVasseur, C. M., Byrapogu, V. K., Dombrowski, M. E., Donaldson, W. F., Shaw, J. D., … Aiyangar, A. K. (2020). In vivo changes in adjacent segment kinematics after lumbar decompression and fusion. Journal of Biomechanics, 102, 109515 (6 pp.). https://doi.org/10.1016/j.jbiomech.2019.109515
A dynamic radiographic imaging study of lumbar intervertebral disc morphometry and deformation <em>in vivo</em>
Byrne, R. M., Aiyangar, A. K., & Zhang, X. (2019). A dynamic radiographic imaging study of lumbar intervertebral disc morphometry and deformation in vivo. Scientific Reports, 9, 15490 (12 pp.). https://doi.org/10.1038/s41598-019-51871-w
Biomechanical analysis and modeling of the in vivo lumbar spine
Byrne, R. (2019). Biomechanical analysis and modeling of the in vivo lumbar spine [Doctoral dissertation]. University of Pittsburgh.
Segmental variations in facet joint translations during <i>in vivo</i> lumbar extension
Byrne, R. M., Zhou, Y., Zheng, L., Chowdhury, S. K., Aiyangar, A., & Zhang, X. (2018). Segmental variations in facet joint translations during in vivo lumbar extension. Journal of Biomechanics, 70, 88-95. https://doi.org/10.1016/j.jbiomech.2017.09.026
ISSLS Prize in bioengineering science 2018: dynamic imaging of degenerative spondylolisthesis reveals mid-range dynamic lumbar instability not evident on static clinical radiographs
Dombrowski, M. E., Rynearson, B., LeVasseur, C., Adgate, Z., Donaldson, W. F., Lee, J. Y., … Anderst, W. J. (2018). ISSLS Prize in bioengineering science 2018: dynamic imaging of degenerative spondylolisthesis reveals mid-range dynamic lumbar instability not evident on static clinical radiographs. European Spine Journal, 27(4), 752-762. https://doi.org/10.1007/s00586-018-5489-0
Preclinical analysis to assess aseptic loosening of orthopaedic implants
Ploeg, H. L., Au, A. G., Aiyangar, A. K., Yamdagni, N., Biegler, K. K., Squire, M. W., & Illgen II, R. L. (2018). Preclinical analysis to assess aseptic loosening of orthopaedic implants. In A. Gefen & D. Weihs (Eds.), Lecture notes in bioengineering. Computer methods in biomechanics and biomedical engineering. Proceedings of the 14th International Symposium CMBBE, Tel Aviv, Israel, 2016 (pp. 129-143). https://doi.org/10.1007/978-3-319-59764-5_15
Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path
Senteler, M., Aiyangar, A., Weisse, B., Farshad, M., & Snedeker, J. G. (2018). Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path. Journal of Biomechanics, 70, 140-148. https://doi.org/10.1016/j.jbiomech.2017.10.027
Instantaneous centers of rotation for lumbar segmental extension in vivo
Aiyangar, A., Zheng, L., Anderst, W., & Zhang, X. (2017). Instantaneous centers of rotation for lumbar segmental extension in vivo. Journal of Biomechanics, 52, 113-121. https://doi.org/10.1016/j.jbiomech.2016.12.021
Lumbar facet joint kinematics and load effects during dynamic lifting
Chowdhury, S. K., Byrne, R. M., Zhou, Y., Aiyangar, A., & Zhang, X. (2017). Lumbar facet joint kinematics and load effects during dynamic lifting. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61(1), 976-980. https://doi.org/10.1177/1541931213601726
Multiscale biomechanical characterization of bioceramic bone scaffolds
Vivanco, J. F., Slane, J., & Aiyangar, A. (2017). Multiscale biomechanical characterization of bioceramic bone scaffolds. In R. Ztero (Ed.), Experimental Methods in Orthopaedic Biomechanics (pp. 201-216). https://doi.org/10.1016/B978-0-12-803802-4.00013-5
Loading of the lumbar spine during backpack carriage
Wettenschwiler, P. D., Lorenzetti, S., Ferguson, S. J., Stämpfli, R., Aiyangar, A. K., Rossi, R. M., & Annaheim, S. (2017). Loading of the lumbar spine during backpack carriage. Computer Methods in Biomechanics and Biomedical Engineering, 20(5), 558-565. https://doi.org/10.1080/10255842.2016.1261849
Apportionment of lumbar L2-S1 rotation across individual motion segments during a dynamic lifting task
Aiyangar, A., Zheng, L., Anderst, W., & Zhang, X. (2015). Apportionment of lumbar L2-S1 rotation across individual motion segments during a dynamic lifting task. Journal of Biomechanics, 48(13), 3709-3715. https://doi.org/10.1016/j.jbiomech.2015.08.022
Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging
Aiyangar, A. K., Zheng, L., Tashman, S., Anderst, W. J., & Zhang, X. (2014). Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging. Journal of Biomechanical Engineering, 136(1), 011004 (9 pp.). https://doi.org/10.1115/1.4025793
Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density
Aiyangar, A. K., Vivanco, J., Au, A. G., Anderson, P. A., Smith, E. L., & Ploeg, H. L. (2014). Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density. Journal of Biomechanical Engineering, 136(9), 091003 (10 pp.). https://doi.org/10.1115/1.4027663
Subject-specific finite element modeling of the tibiofemoral joint based on CT, magnetic resonance imaging and dynamic stereo-radiography data in vivo
Carey, R. E., Zheng, L., Aiyangar, A. K., Harner, C. D., & Zhang, X. (2014). Subject-specific finite element modeling of the tibiofemoral joint based on CT, magnetic resonance imaging and dynamic stereo-radiography data in vivo. Journal of Biomechanical Engineering, 136(4), 041004 (8 pp.). https://doi.org/10.1115/1.4026228
Dependence of human lumbar vertebral trabecular bone (HVTB) mechanical anisotropy ratio on QCT-based apparent density
Aiyangar, A., Vivanco, J., Au, A., Anderson, P., Smith, E., & Ploeg, H. L. (2013). Dependence of human lumbar vertebral trabecular bone (HVTB) mechanical anisotropy ratio on QCT-based apparent density. In ASME conference presenter attendance policy and archival proceedings. https://doi.org/10.1115/SBC2013-14274