Active Filters

  • (-) Empa Authors = Hausmann, Michael K.
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
Fully 3D printed and disposable paper supercapacitors
Aeby, X., Poulin, A., Siqueira, G., Hausmann, M. K., & Nyström, G. (2021). Fully 3D printed and disposable paper supercapacitors. Advanced Materials, 33(26), 2101328 (9 pp.). https://doi.org/10.1002/adma.202101328
3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels
Fourmann, O., Hausmann, M. K., Neels, A., Schubert, M., Nyström, G., Zimmermann, T., & Siqueira, G. (2021). 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 259, 117716 (11 pp.). https://doi.org/10.1016/j.carbpol.2021.117716
Cellulose-based microparticles for magnetically controlled optical modulation and sensing
Hausmann, M. K., Hauser, A., Siqueira, G., Libanori, R., Vehusheia, S. L., Schuerle, S., … Studart, A. R. (2020). Cellulose-based microparticles for magnetically controlled optical modulation and sensing. Small, 16(1), 1904251 (8 pp.). https://doi.org/10.1002/smll.201904251
Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds
Hausmann, M. K., Siqueira, G., Libanori, R., Kokkinis, D., Neels, A., Zimmermann, T., & Studart, A. R. (2020). Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds. Advanced Functional Materials, 30(4), 1904127 (11 pp.). https://doi.org/10.1002/adfm.201904127
3D printed disposable wireless ion sensors with biocompatible cellulose composites
Kim, T., Bao, C., Hausmann, M., Siqueira, G., Zimmermann, T., & Kim, W. S. (2019). 3D printed disposable wireless ion sensors with biocompatible cellulose composites. Advanced Electronic Materials, 5(2), 1800778 (7 pp.). https://doi.org/10.1002/aelm.201800778
Dynamics of cellulose nanocrystal alignment during 3D printing
Hausmann, M. K., Rühs, P. A., Siqueira, G., Läuger, J., Libanori, R., Zimmermann, T., & Studart, A. R. (2018). Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano, 12(7), 6926-6937. https://doi.org/10.1021/acsnano.8b02366
3D printing of strong lightweight cellular structures using polysaccharide-based composite foams
Voisin, H. P., Gordeyeva, K., Siqueira, G., Hausmann, M. K., Studart, A. R., & Bergström, L. (2018). 3D printing of strong lightweight cellular structures using polysaccharide-based composite foams. ACS Sustainable Chemistry and Engineering, 6(12), 17160-17167. https://doi.org/10.1021/acssuschemeng.8b04549
Cellulose nanocrystal inks for 3D printing of textured cellular architectures
Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M. K., Gladman, A. S., Neels, A., … Studart, A. R. (2017). Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials, 27(12), 1604619 (10 pp.). https://doi.org/10.1002/adfm.201604619
About the epitaxial growth of Mg-subgrains on Al<sub>2</sub>MgC<sub>2</sub> interfacial carbides in a squeeze cast Mg-4Al/T300 metal matrix composite
Cayron, C., Buffat, P. A., Hausmann, C., & Beffort, O. (1999). About the epitaxial growth of Mg-subgrains on Al2MgC2 interfacial carbides in a squeeze cast Mg-4Al/T300 metal matrix composite. Journal of Materials Science Letters, 18(20), 1671-1674. https://doi.org/10.1023/A:1006669514604