Active Filters

  • (-) Empa Authors = Heinz, Meike V.F.
Search Results 1 - 20 of 24
Select Page
Influence of precursor morphology and cathode processing on performance and cycle life of sodium-zinc chloride (Na-ZnCl<sub>2</sub>) battery cells
Sieuw, L., Lan, T., Svaluto-Ferro, E., Vagliani, F., Kumar, S., Ding, W., … Heinz, M. V. F. (2024). Influence of precursor morphology and cathode processing on performance and cycle life of sodium-zinc chloride (Na-ZnCl2) battery cells. Energy Storage Materials, 64, 103077 (11 pp.). https://doi.org/10.1016/j.ensm.2023.103077
Cell design strategies for sodium-zinc chloride (Na-ZnCl<sub>2</sub>) batteries, and first demonstration of tubular cells with 38 Ah capacity
Heinz, M. V. F., Sieuw, L., Lan, T., Turconi, A., Basso, D., Vagliani, F., … Battaglia, C. (2023). Cell design strategies for sodium-zinc chloride (Na-ZnCl2) batteries, and first demonstration of tubular cells with 38 Ah capacity. Electrochimica Acta, 464, 142881 (10 pp.). https://doi.org/10.1016/j.electacta.2023.142881
AlCl<sub>3</sub>-NaCl-ZnCl<sub>2</sub> secondary electrolyte in next-generation ZEBRA (Na-ZnCl<sub>2</sub>) battery
Kumar, S., Ding, W., Hoffmann, R., Sieuw, L., Heinz, M. V. F., Weber, N., & Bonk, A. (2023). AlCl3-NaCl-ZnCl2 secondary electrolyte in next-generation ZEBRA (Na-ZnCl2) battery. Batteries, 9(8), 401 (18 pp.). https://doi.org/10.3390/batteries9080401
Planar sodium-nickel chloride batteries with high areal capacity for sustainable energy storage
Lan, T., Graeber, G., Sieuw, L., Svaluto-Ferro, E., Vagliani, F., Basso, D., … Heinz, M. V. F. (2023). Planar sodium-nickel chloride batteries with high areal capacity for sustainable energy storage. Advanced Functional Materials, 33(33), 2302040 (9 pp.). https://doi.org/10.1002/adfm.202302040
Elucidating the rate-limiting processes in high-temperature sodium-metal chloride batteries
Landmann, D., Svaluto-Ferro, E., Heinz, M. V. F., Schmutz, P., & Battaglia, C. (2022). Elucidating the rate-limiting processes in high-temperature sodium-metal chloride batteries. Advanced Science, 9(17), 2201019 (8 pp.). https://doi.org/10.1002/advs.202201019
Analysis of c-lattice parameters to evaluate Na<sub>2</sub>O loss from and Na<sub>2</sub>O content in β''-alumina ceramics
Bay, M. C., Heinz, M. V. F., Danilewsky, A. N., Battaglia, C., & Vogt, U. F. (2021). Analysis of c-lattice parameters to evaluate Na2O loss from and Na2O content in β''-alumina ceramics. Ceramics International, 47(10), 13402-13408. https://doi.org/10.1016/j.ceramint.2021.01.197
Rational cathode design for high-power sodium-metal chloride batteries
Graeber, G., Landmann, D., Svaluto-Ferro, E., Vagliani, F., Basso, D., Turconi, A., … Battaglia, C. (2021). Rational cathode design for high-power sodium-metal chloride batteries. Advanced Functional Materials, 31(46), 2106367 (13 pp.). https://doi.org/10.1002/adfm.202106367
Impact of protonation on the electrochemical performance of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> garnets
Grissa, R., Payandeh, S., Heinz, M., & Battaglia, C. (2021). Impact of protonation on the electrochemical performance of Li7La3Zr2O12 garnets. ACS Applied Materials and Interfaces, 13(12), 14700-14709. https://doi.org/10.1021/acsami.0c23144
Grain size effects on activation energy and conductivity: Na-β″-alumina ceramics and ion conductors with highly resistive grain boundary phases
Heinz, M. V. F., Bay, M. C., Vogt, U. F., & Battaglia, C. (2021). Grain size effects on activation energy and conductivity: Na-β″-alumina ceramics and ion conductors with highly resistive grain boundary phases. Acta Materialia, 213, 116940 (9 pp.). https://doi.org/10.1016/j.actamat.2021.116940
Impact of sintering conditions and zirconia addition on flexural strength and ion conductivity of Na-β&quot;-alumina ceramics
Bay, M. C., Heinz, M. V. F., Linte, C., German, A., Blugan, G., Battaglia, C., & Vogt, U. F. (2020). Impact of sintering conditions and zirconia addition on flexural strength and ion conductivity of Na-β"-alumina ceramics. Materials Today Communications, 23, 101118 (7 pp.). https://doi.org/10.1016/j.mtcomm.2020.101118
Sodium plating from Na‐&lt;em&gt;β&lt;/em&gt;&quot;‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries
Bay, M. ‐C., Wang, M., Grissa, R., Heinz, M. V. F., Sakamoto, J., & Battaglia, C. (2020). Sodium plating from Na‐β"‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Advanced Energy Materials, 10(3), 1902899 (8 pp.). https://doi.org/10.1002/aenm.201902899
Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery
Heinz, M. V. F., Graeber, G., Landmann, D., & Battaglia, C. (2020). Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery. Journal of Power Sources, 465, 228268 (7 pp.). https://doi.org/10.1016/j.jpowsour.2020.228268
Sodium plating and stripping from Na-β&quot;-alumina ceramics beyond 1000 mA/cm&lt;sup&gt;2&lt;/sup&gt;
Landmann, D., Graeber, G., Heinz, M. V. F., Haussener, S., & Battaglia, C. (2020). Sodium plating and stripping from Na-β"-alumina ceramics beyond 1000 mA/cm2. Materials Today Energy, 18, 100515 (8 pp.). https://doi.org/10.1016/j.mtener.2020.100515
Large planar Na-β&quot;-Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; solid electrolytes for next generation Na-Batteries
Ligon, S. C., Bay, M. ‐C., Heinz, M. V. F., Battaglia, C., Graule, T., & Blugan, G. (2020). Large planar Na-β"-Al2O3 solid electrolytes for next generation Na-Batteries. Materials, 13(2), 433 (10 pp.). https://doi.org/10.3390/ma13020433
Performance analysis of Na-β&quot;-Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;/YSZ solid electrolytes produced by conventional sintering and by vapor conversion of α-Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;/YSZ
Ligon, S. C., Blugan, G., Bay, M. C., Battaglia, C., Heinz, M. V. F., & Graule, T. (2020). Performance analysis of Na-β"-Al2O3/YSZ solid electrolytes produced by conventional sintering and by vapor conversion of α-Al2O3/YSZ. Solid State Ionics, 345, 115169 (9 pp.). https://doi.org/10.1016/j.ssi.2019.115169
Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-&lt;em&gt;β&lt;/em&gt;&quot;-alumina ceramics
Bay, M. C., Heinz, M. V. F., Figi, R., Schreiner, C., Basso, D., Zanon, N., … Battaglia, C. (2019). Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-β"-alumina ceramics. ACS Applied Energy Materials, 2(1), 687-693. https://doi.org/10.1021/acsaem.8b01715
Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation
Ju, W., Heinz, M. V. F., Pusterla, L., Hofer, M., Fumey, B., Castiglioni, R., … Vogt, U. F. (2018). Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation. ACS Sustainable Chemistry and Engineering, 6(4), 4829-4837. https://doi.org/10.1021/acssuschemeng.7b04173
High performance anode-supported solid oxide fuel cells with thin film Yttria-Stabilized Zirconia membrane prepared by aerosol-assisted chemical vapor deposition
Jang, D. Y., Kim, M., Kim, J. W., Bae, K., Son, Jwon, Schlupp, M. V. F., & Shim, J. H. (2017). High performance anode-supported solid oxide fuel cells with thin film Yttria-Stabilized Zirconia membrane prepared by aerosol-assisted chemical vapor deposition. Journal of the Electrochemical Society, 164(6), F484-F490. https://doi.org/10.1149/2.0181706jes
Developments for alkaline electrolysis: from materials to laboratory electrolysis
Ju, W., Pusterla, L., Heinz, M. V. F., Burnat, D., Battaglia, C., & Vogt, U. F. (2017). Developments for alkaline electrolysis: from materials to laboratory electrolysis. In I. Cerri, A. Heinzel, G. Bandlamudi, S. Cotte, J. Karstedt, F. Mahlendorf, … F. Valle (Eds.), Proceedings of 6th European PEFC & Electrolyser Forum 2017 (pp. 67-76). EFCF.
Low-temperature reducibility of M&lt;sub&gt;x&lt;/sub&gt;Ce&lt;sub&gt;1-x&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; (M = Zr, Hf) under hydrogen atmosphere
Bonk, A., Remhof, A., Maier, A. C., Trottmann, M., Schlupp, M. V. F., Battaglia, C., & Vogt, U. F. (2016). Low-temperature reducibility of MxCe1-xO2 (M = Zr, Hf) under hydrogen atmosphere. Journal of Physical Chemistry C, 120(1), 118-125. https://doi.org/10.1021/acs.jpcc.5b10796