Active Filters

  • (-) Empa Authors = Hischier, Roland
Search Results 1 - 20 of 66

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
A circular economy within the planetary boundaries: towards a resource-based, systemic approach
Desing, H., Brunner, D., Takacs, F., Nahrath, S., Frankenberger, K., & Hischier, R. (2020). A circular economy within the planetary boundaries: towards a resource-based, systemic approach. Resources, Conservation and Recycling, 155, 104673 (14 pp.). https://doi.org/10.1016/j.resconrec.2019.104673
An integrated pathway based on <em>in vitro</em> data for the human hazard assessment of nanomaterials
Romeo, D., Salieri, B., Hischier, R., Nowack, B., & Wick, P. (2020). An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environment International, 137, 105505 (12 pp.). https://doi.org/10.1016/j.envint.2020.105505
Relative potency factor approach enables the use of <em>in vitro</em> information for estimation of human effect factors for nanoparticle toxicity in life-cycle impact assessment
Salieri, B., Kaiser, J. P., Rösslein, M., Nowack, B., Hischier, R., & Wick, P. (2020). Relative potency factor approach enables the use of in vitro information for estimation of human effect factors for nanoparticle toxicity in life-cycle impact assessment. Nanotoxicology, 14(2), 275-286. https://doi.org/10.1080/17435390.2019.1710872
Powering a sustainable and circular economy - an engineering approach to estimating renewable energy potentials within earth system boundaries
Desing, H., Widmer, R., Beloin-Saint-Pierre, D., Hischier, R., & Wäger, P. (2019). Powering a sustainable and circular economy - an engineering approach to estimating renewable energy potentials within earth system boundaries. Energies, 12(24), 4723 (18 pp.). https://doi.org/10.3390/en12244723
Environmental assessment of the Urban Mining and Recycling (UMAR) unit by applying the LCA framework
Kakkos, E., Heisel, F., Hebel, D. E., & Hischier, R. (2019). Environmental assessment of the Urban Mining and Recycling (UMAR) unit by applying the LCA framework. IOP conference series: earth and environmental science: Vol. 225. (p. 012043 (8 pp.). Presented at the SBE19 Brussels - BAMB-CIRCPATH "Buildings as material banks - a pathway for a circular future". https://doi.org/10.1088/1755-1315/225/1/012043
Fate modelling of nanoparticle releases in LCA: an integrative approach towards “USEtox4Nano”
Salieri, B., Hischier, R., Quik, J. T. K., & Jolliet, O. (2019). Fate modelling of nanoparticle releases in LCA: an integrative approach towards “USEtox4Nano”. Journal of Cleaner Production, 206, 701-712. https://doi.org/10.1016/j.jclepro.2018.09.187
How suitable is LCA for nanotechnology assessment? Overview of current methodological pitfalls and potential solutions: 65th LCA Discussion Forum, Swiss Federal Institute of Technology, Zürich, May 24, 2017
Beloin-Saint-Pierre, D., Turner, D. A., Salieri, B., Haarman, A., & Hischier, R. (2018). How suitable is LCA for nanotechnology assessment? Overview of current methodological pitfalls and potential solutions: 65th LCA Discussion Forum, Swiss Federal Institute of Technology, Zürich, May 24, 2017. International Journal of Life Cycle Assessment, 23(1), 191-196. https://doi.org/10.1007/s11367-017-1399-3
Weiter- und Wiederverwendung von elektrischen und elektronischen Geräten. Ökologische und ökonomische Analyse. Schlussbericht
Böni, H., & Hischier, R. (2018). Weiter- und Wiederverwendung von elektrischen und elektronischen Geräten. Ökologische und ökonomische Analyse. Schlussbericht. sine nomine.
Safety assessment of graphene-based materials: focus on human health and the environment
Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., … Bianco, A. (2018). Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano, 12(11), 10582-10620. https://doi.org/10.1021/acsnano.8b04758
Recovery of scarce technology metals from end-of-life vehicles – a comparative LCA. Final report for work package C4 of the EVA project (Elektronik – Verwertung – Altautos)
Haarman, A., Hischier, R., & Widmer, R. (2018). Recovery of scarce technology metals from end-of-life vehicles – a comparative LCA. Final report for work package C4 of the EVA project (Elektronik – Verwertung – Altautos). St. Gallen: Empa.
Car vs. packaging – a first, simple (environmental) sustainability assessment of our changing shopping behaviour
Hischier, R. (2018). Car vs. packaging – a first, simple (environmental) sustainability assessment of our changing shopping behaviour. Sustainability, 10(9), 3061 (12 pp.). https://doi.org/10.3390/su10093061
Early-stage sustainability evaluation of nanoscale cathode materials for lithium ion batteries
Hischier, R., Kwon, N. H., Brog, J. P., & Fromm, K. M. (2018). Early-stage sustainability evaluation of nanoscale cathode materials for lithium ion batteries. ChemSusChem, 11(13), 2068-2076. https://doi.org/10.1002/cssc.201800109
Eco-efficient process improvement at the early development stage: identifying environmental and economic process hotspots for synergetic improvement potential
Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2018). Eco-efficient process improvement at the early development stage: identifying environmental and economic process hotspots for synergetic improvement potential. Environmental Science and Technology, 52(10), 5959-5967. https://doi.org/10.1021/acs.est.8b01197
Predicting the environmental impact of a future nanocellulose production at industrial scale: application of the life cycle assessment scale-up framework
Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2018). Predicting the environmental impact of a future nanocellulose production at industrial scale: application of the life cycle assessment scale-up framework. Journal of Cleaner Production, 174, 283-295. https://doi.org/10.1016/j.jclepro.2017.10.226
Life cycle assessment of manufactured nanomaterials: Where are we?
Salieri, B., Turner, D. A., Nowack, B., & Hischier, R. (2018). Life cycle assessment of manufactured nanomaterials: Where are we? NanoImpact, 10, 108-120. https://doi.org/10.1016/j.impact.2017.12.003
Derivation of health effect factors for nanoparticles to be used in LCIA
Buist, H. E., Hischier, R., Westerhout, J., & Brouwer, D. H. (2017). Derivation of health effect factors for nanoparticles to be used in LCIA. NanoImpact, 7, 41-53. https://doi.org/10.1016/j.impact.2017.05.002
Most important factors of variability and uncertainty in an LCA study of nanomaterials – findings from a case study with nano titanium dioxide
Hischier, R., Salieri, B., & Pini, M. (2017). Most important factors of variability and uncertainty in an LCA study of nanomaterials – findings from a case study with nano titanium dioxide. NanoImpact, 7, 17-26. https://doi.org/10.1016/j.impact.2017.05.001
Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial
Salieri, B., Pasteris, A., Netkueakul, W., & Hischier, R. (2017). Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial. Journal of Nanoparticle Research, 19, 116 (13 pp.). https://doi.org/10.1007/s11051-017-3748-3
From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies
Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2016). From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 125, 1085-1097. https://doi.org/10.1016/j.jclepro.2016.06.164
Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites
Piccinno, F., Hischier, R., Saba, A., Mitrano, D., Seeger, S., & Som, C. (2016). Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. Journal of Cleaner Production, 112(1), 1199-1210. https://doi.org/10.1016/j.jclepro.2015.06.105
 

Pages