Active Filters

  • (-) Empa Authors = Hu, Yelin
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
Function and electronic structure of the SnO<sub>2</sub> buffer layer between the <em>α</em>-Fe<sub>2</sub>O<sub>3</sub> water oxidation photoelectrode and the transparent conducting oxide current collector
Hu, Y., Boudoire, F., Mayer, M. T., Yoon, S., Graetzel, M., & Braun, A. (2021). Function and electronic structure of the SnO2 buffer layer between the α-Fe2O3 water oxidation photoelectrode and the transparent conducting oxide current collector. Journal of Physical Chemistry C, 125(17), 9158-9168. https://doi.org/10.1021/acs.jpcc.1c01809
Defects on surface and interface for photoelectrochemical properties of hematite photoanodes
Hu, Y. (2017). Defects on surface and interface for photoelectrochemical properties of hematite photoanodes [Doctoral dissertation, Swiss Federal Institute of Technology Lausanne (EPFL)]. https://doi.org/10.5075/epfl-thesis-7566
The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting
Braun, A., Hu, Y., Boudoire, F., Bora, D. K., Sarma, D. D., Grätzel, M., & Eggleston, C. M. (2016). The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting. Catalysis Today, 260, 72-81. https://doi.org/10.1016/j.cattod.2015.07.024
Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes
Hu, Y., Boudoire, F., Herrmann-Geppert, I., Bogdanoff, P., Tsekouras, G., Mun, B. S., … Braun, A. (2016). Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes. Journal of Physical Chemistry C, 120(6), 3250-3258. https://doi.org/10.1021/acs.jpcc.5b08013
Influence of anodization time on the surface modifications on α-Fe<SUB>2</SUB>O<SUB>3</SUB> photoanode upon anodization
Maabong, K., Hu, Y., Braun, A., Machatine, A. G. J., & Diale, M. (2016). Influence of anodization time on the surface modifications on α-Fe2O3 photoanode upon anodization. Journal of Materials Research, 31(11), 1580-1587. https://doi.org/10.1557/jmr.2016.53
Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: effect of electrochemical oxidation
Maabong, K., Machatine, A. G., Hu, Y., Braun, A., Nambala, F. J., & Diale, M. (2016). Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: effect of electrochemical oxidation. Physica B: Condensed Matter, 480, 91-94. https://doi.org/10.1016/j.physb.2015.08.010
A facile nonpolar organic solution process of a nanostructured hematite photoanode with high efficiency and stability for water splitting
Wang, J. J., Hu, Y., Toth, R., Fortunato, G., & Braun, A. (2016). A facile nonpolar organic solution process of a nanostructured hematite photoanode with high efficiency and stability for water splitting. Journal of Materials Chemistry A, 4(8), 2821-2825. https://doi.org/10.1039/C5TA06439B
Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production
Braun, A., Boudoire, F., Bora, D. K., Faccio, G., Hu, Y., Kroll, A., … Wilson, S. T. (2015). Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production. Chemistry: A European Journal, 21(11), 4188-4199. https://doi.org/10.1002/chem.201405123
Charge transfer between photosynthetic proteins and hematite in bio-hybrid photoelectrodes for solar water splitting cells
Faccio, G., Gajda-Schrantz, K., Ihssen, J., Boudoire, F., Hu, Y., Mun, B. S., … Braun, A. (2015). Charge transfer between photosynthetic proteins and hematite in bio-hybrid photoelectrodes for solar water splitting cells. Nano Convergence, 2, 9 (11 pp.). https://doi.org/10.1186/s40580-014-0040-4
High-surface-area porous platinum electrodes for enhanced charge transfer
Hu, Y., Yella, A., Guldin, S., Schreier, M., Stellacci, F., Grätzel, M., & Stefik, M. (2014). High-surface-area porous platinum electrodes for enhanced charge transfer. Advanced Energy Materials, 4(14), 1400510 (8 pp.). https://doi.org/10.1002/aenm.201400510
The nature of the nonmetal–metal transition in LixCoO2 oxide
Milewska, A., Świerczek, K., Tobola, J., Boudoire, F., Hu, Y., Bora, D. K., … Molenda, J. (2014). The nature of the nonmetal–metal transition in LixCoO2 oxide. Solid State Ionics, 263, 110-118. https://doi.org/10.1016/j.ssi.2014.05.011
Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation
Bora, D. K., Hu, Y., Thiess, S., Erat, S., Feng, X., Mukherjee, S., … Braun, A. (2013). Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation. Journal of Electron Spectroscopy and Related Phenomena, 190(art A), 93-105. https://doi.org/10.1016/j.elspec.2012.11.009
A dip coating process for large area silicon-doped high performance hematite photoanodes
Hu, Y., Bora, D. K., Boudoire, F., Häussler, F., Graetzel, M., Constable, E. C., & Braun, A. (2013). A dip coating process for large area silicon-doped high performance hematite photoanodes. Journal of Renewable and Sustainable Energy, 5(4), 043109 (9 pp.). https://doi.org/10.1063/1.4812831
Carbon-graphene nanocomposite cathodes for improved Co(ıı/ııı) mediated dye-sensitized solar cells
Stefik, M., Yum, J. H., Hu, Y., & Grätzel, M. (2013). Carbon-graphene nanocomposite cathodes for improved Co(ıı/ııı) mediated dye-sensitized solar cells. Journal of Materials Chemistry A, 1(16), 4982-4987. https://doi.org/10.1039/C3TA01635H