| Function and electronic structure of the SnO<sub>2</sub> buffer layer between the <em>α</em>-Fe<sub>2</sub>O<sub>3</sub> water oxidation photoelectrode and the transparent conducting oxide current collector
Hu, Y., Boudoire, F., Mayer, M. T., Yoon, S., Graetzel, M., & Braun, A. (2021). Function and electronic structure of the SnO2 buffer layer between the α-Fe2O3 water oxidation photoelectrode and the transparent conducting oxide current collector. Journal of Physical Chemistry C, 125(17), 9158-9168. https://doi.org/10.1021/acs.jpcc.1c01809 |
| Defects on surface and interface for photoelectrochemical properties of hematite photoanodes
Hu, Y. (2017). Defects on surface and interface for photoelectrochemical properties of hematite photoanodes [Doctoral dissertation, Swiss Federal Institute of Technology Lausanne (EPFL)]. https://doi.org/10.5075/epfl-thesis-7566 |
| The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting
Braun, A., Hu, Y., Boudoire, F., Bora, D. K., Sarma, D. D., Grätzel, M., & Eggleston, C. M. (2016). The electronic, chemical and electrocatalytic processes and intermediates on iron oxide surfaces during photoelectrochemical water splitting. Catalysis Today, 260, 72-81. https://doi.org/10.1016/j.cattod.2015.07.024 |
| Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes
Hu, Y., Boudoire, F., Herrmann-Geppert, I., Bogdanoff, P., Tsekouras, G., Mun, B. S., … Braun, A. (2016). Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes. Journal of Physical Chemistry C, 120(6), 3250-3258. https://doi.org/10.1021/acs.jpcc.5b08013 |
| Influence of anodization time on the surface modifications on α-Fe<sub>2</sub>O<sub>3</sub> photoanode upon anodization
Maabong, K., Hu, Y., Braun, A., Machatine, A. G. J., & Diale, M. (2016). Influence of anodization time on the surface modifications on α-Fe2O3 photoanode upon anodization. Journal of Materials Research, 31(11), 1580-1587. https://doi.org/10.1557/jmr.2016.53 |
| Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: effect of electrochemical oxidation
Maabong, K., Machatine, A. G., Hu, Y., Braun, A., Nambala, F. J., & Diale, M. (2016). Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: effect of electrochemical oxidation. Physica B: Condensed Matter, 480, 91-94. https://doi.org/10.1016/j.physb.2015.08.010 |
| A facile nonpolar organic solution process of a nanostructured hematite photoanode with high efficiency and stability for water splitting
Wang, J. J., Hu, Y., Toth, R., Fortunato, G., & Braun, A. (2016). A facile nonpolar organic solution process of a nanostructured hematite photoanode with high efficiency and stability for water splitting. Journal of Materials Chemistry A, 4(8), 2821-2825. https://doi.org/10.1039/C5TA06439B |
| Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production
Braun, A., Boudoire, F., Bora, D. K., Faccio, G., Hu, Y., Kroll, A., … Wilson, S. T. (2015). Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production. Chemistry: A European Journal, 21(11), 4188-4199. https://doi.org/10.1002/chem.201405123 |
| Charge transfer between photosynthetic proteins and hematite in bio-hybrid photoelectrodes for solar water splitting cells
Faccio, G., Gajda-Schrantz, K., Ihssen, J., Boudoire, F., Hu, Y., Mun, B. S., … Braun, A. (2015). Charge transfer between photosynthetic proteins and hematite in bio-hybrid photoelectrodes for solar water splitting cells. Nano Convergence, 2, 9 (11 pp.). https://doi.org/10.1186/s40580-014-0040-4 |
| High-surface-area porous platinum electrodes for enhanced charge transfer
Hu, Y., Yella, A., Guldin, S., Schreier, M., Stellacci, F., Grätzel, M., & Stefik, M. (2014). High-surface-area porous platinum electrodes for enhanced charge transfer. Advanced Energy Materials, 4(14), 1400510 (8 pp.). https://doi.org/10.1002/aenm.201400510 |
| The nature of the nonmetal–metal transition in LixCoO2 oxide
Milewska, A., Świerczek, K., Tobola, J., Boudoire, F., Hu, Y., Bora, D. K., … Molenda, J. (2014). The nature of the nonmetal–metal transition in LixCoO2 oxide. Solid State Ionics, 263, 110-118. https://doi.org/10.1016/j.ssi.2014.05.011 |
| Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation
Bora, D. K., Hu, Y., Thiess, S., Erat, S., Feng, X., Mukherjee, S., … Braun, A. (2013). Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation. Journal of Electron Spectroscopy and Related Phenomena, 190(art A), 93-105. https://doi.org/10.1016/j.elspec.2012.11.009 |
| A dip coating process for large area silicon-doped high performance hematite photoanodes
Hu, Y., Bora, D. K., Boudoire, F., Häussler, F., Graetzel, M., Constable, E. C., & Braun, A. (2013). A dip coating process for large area silicon-doped high performance hematite photoanodes. Journal of Renewable and Sustainable Energy, 5(4), 043109 (9 pp.). https://doi.org/10.1063/1.4812831 |
| Carbon-graphene nanocomposite cathodes for improved Co(ıı/ııı) mediated dye-sensitized solar cells
Stefik, M., Yum, J. H., Hu, Y., & Grätzel, M. (2013). Carbon-graphene nanocomposite cathodes for improved Co(ıı/ııı) mediated dye-sensitized solar cells. Journal of Materials Chemistry A, 1(16), 4982-4987. https://doi.org/10.1039/C3TA01635H |