Active Filters

  • (-) Empa Authors = Kravchyk, Kostiantyn V.
Search Results 1 - 20 of 70

Pages

  • RSS Feed
Select Page
Navigating the carbon maze: a roadmap to effective carbon conductive networks for lithium-ion batteries
Baumgärtner, J. F., Kravchyk, K. V., & Kovalenko, M. V. (2024). Navigating the carbon maze: a roadmap to effective carbon conductive networks for lithium-ion batteries. Advanced Energy Materials, 2400499 (29 pp.). https://doi.org/10.1002/aenm.202400499
Assessment of critical stack pressure and temperature in Li‐Garnet batteries
Klimpel, M., Zhang, H., Paggiaro, G., Dubey, R., Okur, F., Jeurgens, L. P. H., … Kovalenko, M. V. (2024). Assessment of critical stack pressure and temperature in Li‐Garnet batteries. Advanced Materials Interfaces, 11(8), 2300948 (8 pp.). https://doi.org/10.1002/admi.202300948
Building solid-state batteries: insights from Swiss research labs
Kravchyk, K. V., Battaglia, C., Siller, V., Lelotte, B., Kazzi, M. E., Morzy, J., … Kovalenko, M. V. (2024). Building solid-state batteries: insights from Swiss research labs. Chimia, 78(6), 403-414. https://doi.org/10.2533/chimia.2024.403
Nitrile-functionalized poly(siloxane) as electrolytes for high-energy-density solid-state Li batteries
Okur, F., Sheima, Y., Zimmerli, C., Zhang, H., Helbling, P., Fäh, A., … Kravchyk, K. V. (2024). Nitrile-functionalized poly(siloxane) as electrolytes for high-energy-density solid-state Li batteries. ChemSusChem, 17(3), e202301285 (8 pp.). https://doi.org/10.1002/cssc.202301285
Roadmap on multivalent batteries
Palacin, M. R., Johansson, P., Dominko, R., Dlugatch, B., Aurbach, D., Li, Z., … Titirici, M. M. (2024). Roadmap on multivalent batteries. Journal of Physics: Energy, 6(3), 031501 (65 pp.). https://doi.org/10.1088/2515-7655/ad34fc
Garnet-based solid-state Li batteries with high-surface-area porous LLZO membranes
Zhang, H., Okur, F., Pant, B., Klimpel, M., Butenko, S., Karabay, D. T., … Kovalenko, M. V. (2024). Garnet-based solid-state Li batteries with high-surface-area porous LLZO membranes. ACS Applied Materials and Interfaces, 16(10), 12353-12362. https://doi.org/10.1021/acsami.3c14422
Pyrochlore‐type iron hydroxy fluorides as low‐cost lithium‐ion cathode materials for stationary energy storage
Baumgärtner, J. F., Wörle, M., Guntlin, C. P., Krumeich, F., Siegrist, S., Vogt, V., … Kovalenko, M. V. (2023). Pyrochlore‐type iron hydroxy fluorides as low‐cost lithium‐ion cathode materials for stationary energy storage. Advanced Materials, 35(49), 2304158 (11 pp.). https://doi.org/10.1002/adma.202304158
Standardizing critical current density measurements in lithium garnets
Klimpel, M., Zhang, H., Kovalenko, M. V., & Kravchyk, K. V. (2023). Standardizing critical current density measurements in lithium garnets. Communications Chemistry, 6(1), 192 (3 pp.). https://doi.org/10.1038/s42004-023-01002-4
On achievable gravimetric and volumetric energy densities of Al dual-ion batteries
Kravchyk, K. V., & Kovalenko, M. V. (2023). On achievable gravimetric and volumetric energy densities of Al dual-ion batteries. ACS Energy Letters, 8(2), 1266-1269. https://doi.org/10.1021/acsenergylett.2c02908
Benchmarking the performance of lithiated metal oxide interlayers at the LiCoO<sub>2</sub>|LLZO interface
Müller, A., Okur, F., Aribia, A., Osenciat, N., Vaz, C. A. F., Siller, V., … Romanyuk, Y. E. (2023). Benchmarking the performance of lithiated metal oxide interlayers at the LiCoO2|LLZO interface. Materials Advances, 4(9), 2138-2146. https://doi.org/10.1039/d3ma00155e
Intermediate-stage sintered LLZO scaffolds for Li-garnet solid-state batteries
Okur, F., Zhang, H., Karabay, D. T., Muench, K., Parrilli, A., Neels, A., … Kovalenko, M. V. (2023). Intermediate-stage sintered LLZO scaffolds for Li-garnet solid-state batteries. Advanced Energy Materials, 13(15), 2203509 (9 pp.). https://doi.org/10.1002/aenm.202203509
Methodological studies of the mechanism of anion insertion in nanometer-sized carbon micropores
Welty, C., Taylor, E. E., Posey, S., Vailati, P., Kravchyk, K. V., Kovalenko, M. V., & Stadie, N. P. (2023). Methodological studies of the mechanism of anion insertion in nanometer-sized carbon micropores. ChemSusChem, 16(4), e202201847 (11 pp.). https://doi.org/10.1002/cssc.202201847
Bilayer dense‐porous Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> membranes for high‐performance Li‐garnet solid‐state batteries
Zhang, H., Okur, F., Cancellieri, C., Jeurgens, L. P. H., Parrilli, A., Karabay, D. T., … Kravchyk, K. V. (2023). Bilayer dense‐porous Li7La3Zr2O12 membranes for high‐performance Li‐garnet solid‐state batteries. Advanced Science, 10(8), 2205821 (10 pp.). https://doi.org/10.1002/advs.202205821
On high-temperature thermal cleaning of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12 </sub>solid-state electrolytes
Zhang, H., Paggiaro, G., Okur, F., Huwiler, J., Cancellieri, C., Jeurgens, L. P. H., … Kravchyk, K. V. (2023). On high-temperature thermal cleaning of Li7La3Zr2O12 solid-state electrolytes. ACS Applied Energy Materials, 6(13), 6972-6980. https://doi.org/10.1021/acsaem.3c00459
Ultrafast-sintered self-standing LLZO membranes for high energy density lithium-garnet solid-state batteries
Zhang, H., Dubey, R., Inniger, M., Okur, F., Wullich, R., Parrilli, A., … Kovalenko, M. V. (2023). Ultrafast-sintered self-standing LLZO membranes for high energy density lithium-garnet solid-state batteries. Cell Reports Physical Science, 4(7), 101473 (15 pp.). https://doi.org/10.1016/j.xcrp.2023.101473
Extending the high-voltage operation of graphite/NCM811 cells by constructing a robust electrode/electrolyte interphase layer
Zhao, W., Wang, K., Dubey, R., Ren, F., Brack, E., Becker, M., … Battaglia, C. (2023). Extending the high-voltage operation of graphite/NCM811 cells by constructing a robust electrode/electrolyte interphase layer. Materials Today Energy, 34, 101301 (11 pp.). https://doi.org/10.1016/j.mtener.2023.101301
Thermal synthesis of conversion-type bismuth fluoride cathodes for high-energy-density Li-ion batteries
Baumgärtner, J. F., Krumeich, F., Wörle, M., Kravchyk, K. V., & Kovalenko, M. V. (2022). Thermal synthesis of conversion-type bismuth fluoride cathodes for high-energy-density Li-ion batteries. Communications Chemistry, 5, 6 (8 pp.). https://doi.org/10.1038/s42004-021-00622-y
Advances and challenges of aluminum–sulfur batteries
Klimpel, M., Kovalenko, M. V., & Kravchyk, K. V. (2022). Advances and challenges of aluminum–sulfur batteries. Communications Chemistry, 5(1), 77 (7 pp.). https://doi.org/10.1038/s42004-022-00693-5
Silicon oxycarbide-tin nanocomposite derived from a UV crosslinked single source preceramic precursor as high-performance anode materials for Li-ion batteries
Knozowski, D., Sasikumar, P. V. W., Dubey, R., Aebli, M., Kravchyk, K. V., Trykowski, G., … Blugan, G. (2022). Silicon oxycarbide-tin nanocomposite derived from a UV crosslinked single source preceramic precursor as high-performance anode materials for Li-ion batteries. Applied Materials Today, 27, 101424 (10 pp.). https://doi.org/10.1016/j.apmt.2022.101424
Li-garnet solid-state batteries with LLZO scaffolds
Kravchyk, K. V., Zhang, H., Okur, F., & Kovalenko, M. V. (2022). Li-garnet solid-state batteries with LLZO scaffolds. Accounts of Materials Research, 3(4), 411-415. https://doi.org/10.1021/accountsmr.2c00004
 

Pages