Active Filters

  • (-) Empa Authors = Kravchyk, Kostiantyn V.
Search Results 1 - 20 of 43
Select Page
An overview and prospective on Al and Al-ion battery technologies
Elia, G. A., Kravchyk, K. V., Kovalenko, M. V., Chacón, J., Holland, A., & Wills, R. G. A. (2021). An overview and prospective on Al and Al-ion battery technologies. Journal of Power Sources, 481, 228870 (22 pp.). https://doi.org/10.1016/j.jpowsour.2020.228870
Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes
Dubey, R. J. C., Sasikumar, P. V. W., Cerboni, N., Aebli, M., Krumeich, F., Blugan, G., … Kovalenko, M. V. (2020). Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes. Nanoscale, 12(25), 13540-13547. https://doi.org/10.1039/D0NR02930K
Aluminum electrolytes for Al dual-ion batteries
Kravchyk, K. V., & Kovalenko, M. V. (2020). Aluminum electrolytes for Al dual-ion batteries. Communications Chemistry, 3, 120 (9 pp.). https://doi.org/10.1038/s42004-020-00365-2
Building better dual-ion batteries
Kravchyk, K. V., & Kovalenko, M. V. (2020). Building better dual-ion batteries. MRS Energy and Sustainability: A Review Journal, 7, e36 (7 pp.). https://doi.org/10.1557/mre.2020.38
Colloidal antimony sulfide nanoparticles as a high-performance anode material for Li-ion and Na-ion batteries
Kravchyk, K. V., Kovalenko, M. V., & Bodnarchuk, M. I. (2020). Colloidal antimony sulfide nanoparticles as a high-performance anode material for Li-ion and Na-ion batteries. Scientific Reports, 10(1), 2554 (8 pp.). https://doi.org/10.1038/s41598-020-59512-3
Limitations of chloroaluminate ionic liquid anolytes for aluminum-graphite dual-ion batteries
Kravchyk, K. V., Seno, C., & Kovalenko, M. V. (2020). Limitations of chloroaluminate ionic liquid anolytes for aluminum-graphite dual-ion batteries. ACS Energy Letters, 5(2), 545-549. https://doi.org/10.1021/acsenergylett.9b02832
The pitfalls in nonaqueous electrochemistry of Al-ion and Al dual-ion batteries
Kravchyk, K. V., & Kovalenko, M. V. (2020). The pitfalls in nonaqueous electrochemistry of Al-ion and Al dual-ion batteries. Advanced Energy Materials, 10(45), 2002151 (8 pp.). https://doi.org/10.1002/aenm.202002151
Challenges and benefits of post-lithium-ion batteries
Walter, M., Kovalenko, M. V., & Kravchyk, K. V. (2020). Challenges and benefits of post-lithium-ion batteries. New Journal of Chemistry, 44(5), 1677-1683. https://doi.org/10.1039/c9nj05682c
Monodisperse CoSb nanocrystals as high-performance anode material for Li-ion batteries
Wang, S., He, M., Walter, M., Kravchyk, K. V., & Kovalenko, M. V. (2020). Monodisperse CoSb nanocrystals as high-performance anode material for Li-ion batteries. Chemical Communications, 56(89), 13872-13875. https://doi.org/10.1039/D0CC06222G
Structural evolution of iron(III) trifluoroacetate upon thermal decomposition: chains, layers, and rings
Wörle, M., Guntlin, C. P., Gyr, L., Sougrati, M. T., Lambert, C. H., Kravchyk, K. V., … Kovalenko, M. V. (2020). Structural evolution of iron(III) trifluoroacetate upon thermal decomposition: chains, layers, and rings. Chemistry of Materials, 32(6), 2482-2488. https://doi.org/10.1021/acs.chemmater.9b05004
Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes
Afyon, S., Kravchyk, K. V., Wang, S., van den Broek, J., Hänsel, C., Kovalenko, M. V., & Rupp, J. L. M. (2019). Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes. Journal of Materials Chemistry A, 7(37), 21299-21308. https://doi.org/10.1039/C9TA04999A
Silicon oxycarbide—tin nanocomposite as a high‐power‐density anode for Li‐ion batteries
Dubey, R. J. ‐C., Vallachira Warriam Sasikumar, P., Krumeich, F., Blugan, G., Kuebler, J., Kravchyk, K. V., … Kovalenko, M. V. (2019). Silicon oxycarbide—tin nanocomposite as a high‐power‐density anode for Li‐ion batteries. Advanced Science, 6(19), 1901220 (9 pp.). https://doi.org/10.1002/advs.201901220
Zeolite-templated carbon as a stable, high power magnesium-ion cathode material
Dubey, R. J. C., Colijn, T., Aebli, M., Hanson, E. E., Widmer, R., Kravchyk, K. V., … Stadie, N. P. (2019). Zeolite-templated carbon as a stable, high power magnesium-ion cathode material. ACS Applied Materials and Interfaces, 11(43), 39902-39909. https://doi.org/10.1021/acsami.9b11968
Zeolite-templated carbon as the cathode for a high energy density dual-ion battery
Dubey, R. J. C., Nüssli, J., Piveteau, L., Kravchyk, K. V., Rossell, M. D., Campanini, M., … Stadie, N. P. (2019). Zeolite-templated carbon as the cathode for a high energy density dual-ion battery. ACS Applied Materials and Interfaces, 11(19), 17686-17696. https://doi.org/10.1021/acsami.9b03886
Transition metal trifluoroacetates (M = Fe, Co, Mn) as precursors for uniform colloidal metal difluoride and phosphide nanoparticles
Guntlin, C. P., Kravchyk, K. V., Erni, R., & Kovalenko, M. V. (2019). Transition metal trifluoroacetates (M = Fe, Co, Mn) as precursors for uniform colloidal metal difluoride and phosphide nanoparticles. Scientific Reports, 9, 6613 (10 pp.). https://doi.org/10.1038/s41598-019-43018-8
A high-voltage concept with sodium-ion conducting β-alumina for magnesium-sodium dual-ion batteries
Kravchyk, K. V., Walter, M., & Kovalenko, M. V. (2019). A high-voltage concept with sodium-ion conducting β-alumina for magnesium-sodium dual-ion batteries. Communications Chemistry, 2, 84 (6 pp.). https://doi.org/10.1038/s42004-019-0186-4
Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries
Kravchyk, K. V., Widmer, R., Erni, R., Dubey, R. J. C., Krumeich, F., Kovalenko, M. V., & Bodnarchuk, M. I. (2019). Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries. Scientific Reports, 9(1), 7988 (8 pp.). https://doi.org/10.1038/s41598-019-43639-z
Rechargeable dual‐ion batteries with graphite as a cathode: key challenges and opportunities
Kravchyk, K. V., & Kovalenko, M. V. (2019). Rechargeable dual‐ion batteries with graphite as a cathode: key challenges and opportunities. Advanced Energy Materials, 9(35), 1901749 (16 pp.). https://doi.org/10.1002/aenm.201901749
Anatase TiO<sub>2</sub> nanorods as cathode materials for aluminum-ion batteries
Wang, S., Kravchyk, K. V., Pigeot-Rémy, S., Tang, W., Krumeich, F., Wörle, M., … Kovalenko, M. V. (2019). Anatase TiO2 nanorods as cathode materials for aluminum-ion batteries. ACS Applied Nano Materials, 2(10), 6428-6435. https://doi.org/10.1021/acsanm.9b01391
Overcoming the high-voltage limitations of Li-Ion batteries using a titanium nitride current collector
Wang, S., Kravchyk, K. V., Filippin, A. N., Widmer, R., Tiwari, A. N., Buecheler, S., … Kovalenko, M. V. (2019). Overcoming the high-voltage limitations of Li-Ion batteries using a titanium nitride current collector. ACS Applied Energy Materials, 2(2), 974-978. https://doi.org/10.1021/acsaem.8b01771