Active Filters

  • (-) Empa Authors = Krug, Harald F.
Search Results 1 - 20 of 97

Pages

  • RSS Feed
Select Page
A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment
Ede, J. D., Halappanavar, S., Mahapatra, I., Krug, H. F., Kuempel, E. D., Lynch, I., … Shatkin, J. A. (2021). A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment. Nanotoxicology, 15(3), 289-310. https://doi.org/10.1080/17435390.2020.1851419
Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report)
Gubala, V., Johnston, L. J., Liu, Z., Krug, H., Moore, C. J., Ober, C. K., … Vert, M. (2018). Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report). Pure and Applied Chemistry, 90(8), 1283-1324. https://doi.org/10.1515/pac-2017-0101
Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report)
Gubala, V., Johnston, L. J., Krug, H., Moore, C. J., Ober, C. K., Schwenk, M., & Vert, M. (2018). Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). Pure and Applied Chemistry, 90(8), 1325-1356. https://doi.org/10.1515/pac-2017-0102
The uncertainty with nanosafety: validity and reliability of published data
Krug, H. F. (2018). The uncertainty with nanosafety: validity and reliability of published data. Colloids and Surfaces B: Biointerfaces, 172, 113-117. https://doi.org/10.1016/j.colsurfb.2018.08.036
Green Toxicology: a strategy for sustainable chemical and material development
Crawford, S. E., Hartung, T., Hollert, H., Mathes, B., van Ravenzwaay, B., Steger-Hartmann, T., … Krug, H. F. (2017). Green Toxicology: a strategy for sustainable chemical and material development. Environmental Sciences Europe, 29(1), 16 (16 pp.). https://doi.org/10.1186/s12302-017-0115-z
Toward achieving harmonization in a nanocytotoxicity assay measurement through an interlaboratory comparison study
Elliott, J. T., Rösslein, M., Song, N. W., Toman, B., Kinsner-Ovaskainen, A., Maniratanachote, R., … Wick, P. (2017). Toward achieving harmonization in a nanocytotoxicity assay measurement through an interlaboratory comparison study. ALTEX: Alternatives to Animal Experimentation, 34(2), 201-218. https://doi.org/10.14573/altex.1605021
Zuverlässigkeit in der Nanosicherheitsforschung. Reliability for nanosafety research
Krug, H. F., & Nau, K. (2017). Zuverlässigkeit in der Nanosicherheitsforschung. Reliability for nanosafety research. Chemie Ingenieur Technik, 89(3), 215-223. https://doi.org/10.1002/cite.201600088
Uptake of label-free graphene oxide by Caco-2 cells is dependent on the cell differentiation status
Kucki, M., Diener, L., Bohmer, N., Hirsch, C., Krug, H. F., Palermo, V., & Wick, P. (2017). Uptake of label-free graphene oxide by Caco-2 cells is dependent on the cell differentiation status. Journal of Nanobiotechnology, 15(1), 46 (18 pp.). https://doi.org/10.1186/s12951-017-0280-7
Environmental benefits and concerns on safety: communicating latest results on nanotechnology safety research - the project DaNa<SUP>2.0</SUP>
Kühnel, D., Marquardt, C., Nau, K., Krug, H. F., Paul, F., & Steinbach, C. (2017). Environmental benefits and concerns on safety: communicating latest results on nanotechnology safety research - the project DaNa2.0. Environmental Science and Pollution Research, 24(12), 11120-11125. https://doi.org/10.1007/s11356-016-6217-0
From <i>in vivo</i> to <i>in vitro</i>: the medical device testing paradigm shift
Myers, D. K., Goldberg, A. M., Poth, A., Wolf, M. F., Carraway, J., McKim, J., … Hartung, T. (2017). From in vivo to in vitro: the medical device testing paradigm shift. ALTEX: Alternatives to Animal Experimentation, 34(4), 479-500. https://doi.org/10.14573/altex.1608081
Diverse applications of nanomedicine
Pelaz, B., Alexiou, C., Alvarez-Puebla, R. A., Alves, F., Andrews, A. M., Ashraf, S., … Parak, W. J. (2017). Diverse applications of nanomedicine. ACS Nano, 11(3), 2313-2381. https://doi.org/10.1021/acsnano.6b06040
Digging below the surface: the hidden quality of the OECD nanosilver dossier
Schmutz, M., Som, C., Krug, H. F., & Nowack, B. (2017). Digging below the surface: the hidden quality of the OECD nanosilver dossier. Environmental Science: Nano, 4(6), 1209-1215. https://doi.org/10.1039/C7EN00088J
DaNa 2.0 ― verlässliche Informationen zur Sicherheit von marktüblichen Nanomaterialien. DaNa 2.0 ― reliable information on the safety of commercially available nanomaterials
Steinbach, C., Bohmer, N., Krug, H. F., Kühnel, D., Nau, K., Paul, F., … Marquardt, C. (2017). DaNa 2.0 ― verlässliche Informationen zur Sicherheit von marktüblichen Nanomaterialien. DaNa 2.0 ― reliable information on the safety of commercially available nanomaterials. Chemie Ingenieur Technik, 89(3), 232-238. https://doi.org/10.1002/cite.201600074
Sichere Nanomaterialien?! Neue Erkenntnisse und Methoden in der Physik führten zur Nanotechnologie, einem breiten Forschungsfeld mit möglichen Risiken für Umwelt und Gesundheit.
Nau, K., & Krug, H. F. (2016). Sichere Nanomaterialien?! Neue Erkenntnisse und Methoden in der Physik führten zur Nanotechnologie, einem breiten Forschungsfeld mit möglichen Risiken für Umwelt und Gesundheit. Physik Journal, 15(11), 29-34.
The DaNa<SUP>2.0</SUP> knowledge base on nanomaterials ― communicating current nanosafety research based on evaluated literature data
Nau, K., Bohmer, N., Kühnel, D., Marquardt, C., Paul, F., Steinbach, C., & Krug, H. F. (2016). The DaNa2.0 knowledge base on nanomaterials ― communicating current nanosafety research based on evaluated literature data. Journal of Materials Education, 38(3-4), 93-108.
Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology
Gordon, S., Daneshian, M., Bouwstra, J., Caloni, F., Constant, S., Davies, D. E., … Lehr, C. M. (2015). Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives to Animal Experimentation, 32(4), 327-378. https://doi.org/10.14573/altex.1510051
Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an <I>ex vivo</I> human placental perfusion model
Grafmueller, S., Manser, P., Diener, L., Diener, P. A., Maeder-Althaus, X., Maurizi, L., … Wick, P. (2015). Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model. Environmental Health Perspectives, 123(12), 1280-1286. https://doi.org/10.1289/ehp.1409271
Transfer studies of polystyrene nanoparticles in the &lt;em&gt;ex vivo&lt;/em&gt; human placenta perfusion model: key sources of artifacts
Grafmueller, S., Manser, P., Diener, L., Maurizi, L., Diener, P. A., Hofmann, H., … Wick, P. (2015). Transfer studies of polystyrene nanoparticles in the ex vivo human placenta perfusion model: key sources of artifacts. Science and Technology of Advanced Materials, 16(4), 044602 (10 pp.). https://doi.org/10.1088/1468-6996/16/4/044602
Focus on materials challenges for protection—environment and health
Krug, H. (2015). Focus on materials challenges for protection—environment and health. Science and Technology of Advanced Materials, 16(3), 030301 (2 pp.). https://doi.org/10.1088/1468-6996/16/3/030301
Nanotechnologie versus Nanotoxikologie - wohin geht die Reise?
Krug, H. F. (2015). Nanotechnologie versus Nanotoxikologie - wohin geht die Reise? Praxis der Naturwissenschaften: Chemie in der Schule, 64(4), 11-17.
 

Pages