| Deep learning applied to CO<sub>2</sub> power plant emissions quantification using simulated satellite images
Dumont Le Brazidec, J., Vanderbecken, P., Farchi, A., Broquet, G., Kuhlmann, G., & Bocquet, M. (2024). Deep learning applied to CO2 power plant emissions quantification using simulated satellite images. Geoscientific Model Development, 17(5), 1995-2014. https://doi.org/10.5194/gmd-17-1995-2024 |
| Analyzing nitrogen dioxide to nitrogen oxide scaling factors for data-driven satellite-based emission estimation methods: A case study of Matimba/Medupi power stations in South Africa
Hakkarainen, J., Kuhlmann, G., Koene, E., Santaren, D., Meier, S., Krol, M. C., … Broquet, G. (2024). Analyzing nitrogen dioxide to nitrogen oxide scaling factors for data-driven satellite-based emission estimation methods: A case study of Matimba/Medupi power stations in South Africa. Atmospheric Pollution Research, 15(7), 102171 (11 pp.). https://doi.org/10.1016/j.apr.2024.102171 |
| On the theory of the divergence method for quantifying source emissions from satellite observations
Koene, E. F. M., Brunner, D., & Kuhlmann, G. (2024). On the theory of the divergence method for quantifying source emissions from satellite observations. Journal of Geophysical Research D: Atmospheres, 129(12), e2023JD039904 (26 pp.). https://doi.org/10.1029/2023JD039904 |
| The <em>ddeq</em> Python library for point source quantification from remote sensing images (version 1.0)
Kuhlmann, G., Koene, E., Meier, S., Santaren, D., Broquet, G., Chevallier, F., … Brunner, D. (2024). The ddeq Python library for point source quantification from remote sensing images (version 1.0). Geoscientific Model Development, 17(12), 4773-4789. https://doi.org/10.5194/gmd-17-4773-2024 |
| A lightweight NO<sub>2</sub>-to-NO<sub>x</sub> conversion model for quantifying NO<sub><em>x</em></sub> emissions of point sources from NO<sub>2</sub> satellite observations
Meier, S., Koene, E. F. M., Krol, M., Brunner, D., Damm, A., & Kuhlmann, G. (2024). A lightweight NO2-to-NOx conversion model for quantifying NOx emissions of point sources from NO2 satellite observations. Atmospheric Chemistry and Physics, 24(13), 7667-7686. https://doi.org/10.5194/acp-24-7667-2024 |
| Evaluation of simulated CO<sub>2</sub> power plant plumes from six high-resolution atmospheric transport models
Brunner, D., Kuhlmann, G., Henne, S., Koene, E., Kern, B., Wolff, S., … Fix, A. (2023). Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models. Atmospheric Chemistry and Physics, 23(4), 2699-2728. https://doi.org/10.5194/acp-23-2699-2023 |
| Segmentation of XCO<sub>2</sub> images with deep learning: application to synthetic plumes from cities and power plants
Dumont Le Brazidec, J., Vanderbecken, P., Farchi, A., Bocquet, M., Lian, J., Broquet, G., … Lauvaux, T. (2023). Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants. Geoscientific Model Development, 16(13), 3997-4016. https://doi.org/10.5194/gmd-16-3997-2023 |
| Analyzing local carbon dioxide and nitrogen oxide emissions from space using the divergence method: an application to the synthetic SMARTCARB dataset
Hakkarainen, J., Ialongo, I., Koene, E., Szeląg, M. E., Tamminen, J., Kuhlmann, G., & Brunner, D. (2022). Analyzing local carbon dioxide and nitrogen oxide emissions from space using the divergence method: an application to the synthetic SMARTCARB dataset. Frontiers in Remote Sensing, 3, 878731 (13 pp.). https://doi.org/10.3389/frsen.2022.878731 |
| Assessing the impact of atmospheric CO<sub>2</sub> and NO<sub>2</sub> measurements from space on estimating city-scale fossil fuel CO<sub>2</sub> emissions in a data assimilation system
Kaminski, T., Scholze, M., Rayner, P., Houweling, S., Voßbeck, M., Silver, J., … Meijer, Y. (2022). Assessing the impact of atmospheric CO2 and NO2 measurements from space on estimating city-scale fossil fuel CO2 emissions in a data assimilation system. Frontiers in Remote Sensing, 3, 887456 (21 pp.). https://doi.org/10.3389/frsen.2022.887456 |
| Mapping the spatial distribution of NO<sub>2</sub> with in situ and remote sensing instruments during the Munich NO<sub>2</sub> imaging campaign
Kuhlmann, G., Chan, K. L., Donner, S., Zhu, Y., Schwaerzel, M., Dörner, S., … Wenig, M. (2022). Mapping the spatial distribution of NO2 with in situ and remote sensing instruments during the Munich NO2 imaging campaign. Atmospheric Measurement Techniques, 15(6), 1609-1629. https://doi.org/10.5194/amt-15-1609-2022 |
| Importance of satellite observations for high-resolution mapping of near-surface NO<sub>2</sub> by machine learning
Kim, M., Brunner, D., & Kuhlmann, G. (2021). Importance of satellite observations for high-resolution mapping of near-surface NO2 by machine learning. Remote Sensing of Environment, 264, 112573 (13 pp.). https://doi.org/10.1016/j.rse.2021.112573 |
| Quantifying CO<sub>2</sub> emissions of power plants with CO<sub>2</sub> and NO<sub>2</sub> imaging satellites
Kuhlmann, G., Henne, S., Meijer, Y., & Brunner, D. (2021). Quantifying CO2 emissions of power plants with CO2 and NO2 imaging satellites. Frontiers in Remote Sensing, 2, 689838 (18 pp.). https://doi.org/10.3389/frsen.2021.689838 |
| SMARTCARB 2. Use of satellite measurements of auxiliary reactive trace gases for fossil fuel carbon dioxide emission estimation (phase 2)
Kuhlmann, G., Henne, S., Brunner, D., Löscher, A., & Meijer, Y. (2021). SMARTCARB 2. Use of satellite measurements of auxiliary reactive trace gases for fossil fuel carbon dioxide emission estimation (phase 2). Empa. https://doi.org/10.5281/zenodo.4674167 |
| Impact of 3D radiative transfer on airborne NO<sub>2</sub> imaging remote sensing over cities with buildings
Schwaerzel, M., Brunner, D., Jakub, F., Emde, C., Buchmann, B., Berne, A., & Kuhlmann, G. (2021). Impact of 3D radiative transfer on airborne NO2 imaging remote sensing over cities with buildings. Atmospheric Measurement Techniques, 14(10), 6469-6482. https://doi.org/10.5194/amt-14-6469-2021 |
| An online emission module for atmospheric chemistry transport models: implementation in COSMO-GHG v5.6a and COSMO-ART v5.1-3.1
Jähn, M., Kuhlmann, G., Mu, Q., Haussaire, J. M., Ochsner, D., Osterried, K., … Brunner, D. (2020). An online emission module for atmospheric chemistry transport models: implementation in COSMO-GHG v5.6a and COSMO-ART v5.1-3.1. Geoscientific Model Development, 13(5), 2379-2392. https://doi.org/10.5194/gmd-13-2379-2020 |
| Urban greenhouse gas emissions from the Berlin area: a case study using airborne CO<sub>2</sub> and CH<sub>4</sub> in situ observations in summer 2018
Klausner, T., Mertens, M., Huntrieser, H., Galkowski, M., Kuhlmann, G., Baumann, R., … Roiger, A. (2020). Urban greenhouse gas emissions from the Berlin area: a case study using airborne CO2 and CH4 in situ observations in summer 2018. Elementa: Science of the Anthropocene, 8, 15 (24 pp.). https://doi.org/10.1525/elementa.411 |
| Quantifying CO<sub>2</sub> emissions of a city with the copernicus anthropogenic CO<sub>2</sub> monitoring satellite mission
Kuhlmann, G., Brunner, D., Broquet, G., & Meijer, Y. (2020). Quantifying CO2 emissions of a city with the copernicus anthropogenic CO2 monitoring satellite mission. Atmospheric Measurement Techniques, 13(12), 6733-6754. https://doi.org/10.5194/amt-13-6733-2020 |
| Three-dimensional radiative transfer effects on airborne and ground-based trace gas remote sensing
Schwaerzel, M., Emde, C., Brunner, D., Morales, R., Wagner, T., Berne, A., … Kuhlmann, G. (2020). Three-dimensional radiative transfer effects on airborne and ground-based trace gas remote sensing. Atmospheric Measurement Techniques, 13(8), 4277-4293. https://doi.org/10.5194/amt-13-4277-2020 |
| Spatial and temporal representativeness of point measurements for nitrogen dioxide pollution levels in cities
Zhu, Y., Chen, J., Bi, X., Kuhlmann, G., Chan, K. L., Dietrich, F., … Wenig, M. (2020). Spatial and temporal representativeness of point measurements for nitrogen dioxide pollution levels in cities. Atmospheric Chemistry and Physics, 20(21), 13241-13251. https://doi.org/10.5194/acp-20-13241-2020 |
| Accounting for the vertical distribution of emissions in atmospheric CO<sub>2</sub> simulations
Brunner, D., Kuhlmann, G., Marshall, J., Clément, V., Fuhrer, O., Broquet, G., … Meijer, Y. (2019). Accounting for the vertical distribution of emissions in atmospheric CO2 simulations. Atmospheric Chemistry and Physics, 19(7), 4541-4559. https://doi.org/10.5194/acp-19-4541-2019 |