Active Filters

  • (-) Empa Authors = Kühnel, Ruben-Simon
  • (-) Empa Authors ≠ Cuervo-Reyes, Eduardo
  • (-) Keywords ≠ aqueous electrolytes
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Modification of NMC811 with titanium for enhanced cycling and high-voltage stability
Bizzotto, F., Dachraoui, W., Grissa, R., Zhao, W., Pagani, F., Querel, E., … Battaglia, C. (2023). Modification of NMC811 with titanium for enhanced cycling and high-voltage stability. Electrochimica Acta, 462, 142758 (11 pp.). https://doi.org/10.1016/j.electacta.2023.142758
Multifunctional additive ethoxy(pentafluoro)cyclotriphosphazene enables safe carbonate electrolyte for SiO<em><sub>x</sub></em>-graphite/NMC811 batteries
Liu, S., Becker, M., Huang-Joos, Y., Lai, H., Homann, G., Grissa, R., … Kühnel, R. S. (2023). Multifunctional additive ethoxy(pentafluoro)cyclotriphosphazene enables safe carbonate electrolyte for SiOx-graphite/NMC811 batteries. Batteries and Supercaps, 6(7), e202300220 (10 pp.). https://doi.org/10.1002/batt.202300220
Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes
Becker, M., Zhao, W., Pagani, F., Schreiner, C., Figi, R., Dachraoui, W., … Battaglia, C. (2022). Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes. ACS Applied Energy Materials, 5(9), 11133-11141. https://doi.org/10.1021/acsaem.2c01722
Electrolytes with flame retardant pentafluoro(phenoxy)cyclotriphosphazene for nickel-rich layered oxide/graphite cells
Nilsson, V., Liu, S., Battaglia, C., & Kühnel, R. S. (2022). Electrolytes with flame retardant pentafluoro(phenoxy)cyclotriphosphazene for nickel-rich layered oxide/graphite cells. Electrochimica Acta, 427, 140867 (6 pp.). https://doi.org/10.1016/j.electacta.2022.140867
Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries
Reber, D., Borodin, O., Becker, M., Rentsch, D., Thienenkamp, J. H., Grissa, R., … Kühnel, R. ‐S. (2022). Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries. Advanced Functional Materials, 32(20), 2112138 (13 pp.). https://doi.org/10.1002/adfm.202112138
The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes
Becker, M., Rentsch, D., Reber, D., Aribia, A., Battaglia, C., & Kühnel, R. S. (2021). The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes. Angewandte Chemie International Edition, 60, 14100-14108. https://doi.org/10.1002/anie.202103375
Anion selection criteria for water-in-salt electrolytes
Reber, D., Grissa, R., Becker, M., Kühnel, R. S., & Battaglia, C. (2021). Anion selection criteria for water-in-salt electrolytes. Advanced Energy Materials, 11(5), 2002913 (10 pp.). https://doi.org/10.1002/aenm.202002913
Perspective-electrochemical stability of water-in-salt electrolytes
Kühnel, R. S., Reber, D., & Battaglia, C. (2020). Perspective-electrochemical stability of water-in-salt electrolytes. Journal of the Electrochemical Society, 167(7), 070544 (4 pp.). https://doi.org/10.1149/1945-7111/ab7c6f
Impact of anion asymmetry on local structure and supercooling behavior of water-in-salt electrolytes
Reber, D., Takenaka, N., Kühnel, R. S., Yamada, A., & Battaglia, C. (2020). Impact of anion asymmetry on local structure and supercooling behavior of water-in-salt electrolytes. Journal of Physical Chemistry Letters, 11(12), 4720-4725. https://doi.org/10.1021/acs.jpclett.0c00806
Electrochemical oxidative stability of hydroborate-based solid-state electrolytes
Asakura, R., Duchêne, L., Kühnel, R. S., Remhof, A., Hagemann, H., & Battaglia, C. (2019). Electrochemical oxidative stability of hydroborate-based solid-state electrolytes. ACS Applied Energy Materials, 2(9), 6924-6930. https://doi.org/10.1021/acsaem.9b01487
Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below -10 °C
Becker, M., Kühnel, R. S., & Battaglia, C. (2019). Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below -10 °C. Chemical Communications, 55(80), 12032-12035. https://doi.org/10.1039/C9CC04495G
Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries
Reber, D., Kühnel, R. S., & Battaglia, C. (2019). Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries. ACS Materials Letters, 1(1), 44-51. https://doi.org/10.1021/acsmaterialslett.9b00043
Reorientational hydrogen dynamics in complex hydrides with enhanced Li<sup>+</sup> conduction
Burankova, T., Duchêne, L., Łodziana, Z., Frick, B., Yan, Y., Kühnel, R. S., … Embs, J. P. (2017). Reorientational hydrogen dynamics in complex hydrides with enhanced Li+ conduction. Journal of Physical Chemistry C, 121(33), 17693-17702. https://doi.org/10.1021/acs.jpcc.7b05651
A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture
Duchêne, L., Kühnel, R. S., Rentsch, D., Remhof, A., Hagemann, H., & Battaglia, C. (2017). A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chemical Communications, 53(30), 4195-4198. https://doi.org/10.1039/C7CC00794A
A high-voltage aqueous electrolyte for sodium-ion batteries
Kühnel, R. S., Reber, D., & Battaglia, C. (2017). A high-voltage aqueous electrolyte for sodium-ion batteries. ACS Energy Letters, 2(9), 2005-2006. https://doi.org/10.1021/acsenergylett.7b00623
High-voltage aqueous supercapacitors based on NaTFSI
Reber, D., Kühnel, R. S., & Battaglia, C. (2017). High-voltage aqueous supercapacitors based on NaTFSI. Sustainable Energy and Fuels, 1(10), 2155-2161. https://doi.org/10.1039/C7SE00423K
Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries
Roedern, E., Kühnel, R. S., Remhof, A., & Battaglia, C. (2017). Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Scientific Reports, 7, 46189 (6 pp.). https://doi.org/10.1038/srep46189
“Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries
Kühnel, R. S., Reber, D., Remhof, A., Figi, R., Bleiner, D., & Battaglia, C. (2016). “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries. Chemical Communications, 52(68), 10435-10438. https://doi.org/10.1039/C6CC03969C