Active Filters

  • (-) Empa Authors = Malfait, Wim J.
  • (-) Journal ≠ MRS Energy and Sustainability
Search Results 1 - 20 of 70

Pages

  • RSS Feed
Select Page
The poor reliability of thermal conductivity data in the aerogel literature: a call to action!
Malfait, W. J., Ebert, H. P., Brunner, S., Wernery, J., Galmarini, S., Zhao, S., & Reichenauer, G. (2024). The poor reliability of thermal conductivity data in the aerogel literature: a call to action!. Journal of Sol-Gel Science and Technology, 109, 569-579. https://doi.org/10.1007/s10971-023-06282-9
Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties
Sivaraman, D., Nagel, Y., Siqueira, G., Chansoria, P., Avaro, J., Neels, A., … Zhao, S. (2024). Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties. Advanced Science. https://doi.org/10.1002/advs.202307921
Development and evaluation of highly thermally insulating aerogel glass bricks
Ganobjak, M., Malfait, W. J., Just, J., Käppeli, M., Mancebo, F., Brunner, S., & Wernery, J. (2023). Development and evaluation of highly thermally insulating aerogel glass bricks. In Journal of physics: conference series: Vol. 2600. Daylighting & electric lighting (p. 112015 (6 pp.). https://doi.org/10.1088/1742-6596/2600/11/112015
Get the light & keep the warmth - A highly insulating, translucent aerogel glass brick for building envelopes
Ganobjak, M., Malfait, W. J., Just, J., Käppeli, M., Mancebo, F., Brunner, S., & Wernery, J. (2023). Get the light & keep the warmth - A highly insulating, translucent aerogel glass brick for building envelopes. Journal of Building Engineering, 64, 105600 (12 pp.). https://doi.org/10.1016/j.jobe.2022.105600
FireDrone: multi-environment thermally agnostic aerial robot
Häusermann, D., Bodry, S., Wiesemüller, F., Miriyev, A., Siegrist, S., Fu, F., … Kovač, M. (2023). FireDrone: multi-environment thermally agnostic aerial robot. Advanced Intelligent Systems, 5(9), 2300101 (11 pp.). https://doi.org/10.1002/aisy.202300101
Carbon nanostructures - silica aerogel composites for adsorption of organic pollutants
Lamy-Mendes, A., Lopes, D., Girão, A. V., Silva, R. F., Malfait, W. J., & Durães, L. (2023). Carbon nanostructures - silica aerogel composites for adsorption of organic pollutants. Toxics, 11(3), 232 (29 pp.). https://doi.org/10.3390/toxics11030232
Silica aerogels: from materials research to industrial applications
Li, C., Zhang, G., Lin, L., Wu, T., Brunner, S., Galmarini, S., … Ostrikov, K. (2023). Silica aerogels: from materials research to industrial applications. International Materials Reviews, 68(7), 862-900. https://doi.org/10.1080/09506608.2023.2167547
Vibration and structure-borne sound isolation properties of silica aerogels
Palacio, O., Malfait, W. J., Michel, S., Barbezat, M., & Mazrouei-Sebdani, Z. (2023). Vibration and structure-borne sound isolation properties of silica aerogels. Construction and Building Materials, 399, 132568 (13 pp.). https://doi.org/10.1016/j.conbuildmat.2023.132568
Aerogel-based solar-powered water production from atmosphere and ocean: a review
Sun, J., Wu, T., Wu, H., Li, W., Li, L., Liu, S., … Zhao, S. (2023). Aerogel-based solar-powered water production from atmosphere and ocean: a review. Materials Science and Engineering: R Reports, 154, 100735 (38 pp.). https://doi.org/10.1016/j.mser.2023.100735
Turning waste into insulation - a new sustainable thermal insulation board based on wheat bran and banana peels
Trobiani Di Canto, J. A., Malfait, W. J., & Wernery, J. (2023). Turning waste into insulation - a new sustainable thermal insulation board based on wheat bran and banana peels. Building and Environment, 244, 110740 (10 pp.). https://doi.org/10.1016/j.buildenv.2023.110740
Flexible, high-temperature-resistant silica-polymer aerogel hybrids by templating polymethylsilsesquioxane microstructure with trace polyimide
Wang, X., Zhang, Z., Wang, Y., Malfait, W. J., Zhao, S., Tian, Y., … Shen, J. (2023). Flexible, high-temperature-resistant silica-polymer aerogel hybrids by templating polymethylsilsesquioxane microstructure with trace polyimide. Advanced Composites and Hybrid Materials, 6, 32 (14 pp.). https://doi.org/10.1007/s42114-022-00587-z
3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management
Wu, T., Ganobjak, M., Siqueira, G., Zeng, Z., Li, M., Filimonova, E., … Zhao, S. (2023). 3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management. Advanced Materials Technologies, 8(14), 2202155 (9 pp.). https://doi.org/10.1002/admt.202202155
Biopolymer-silica aerogel nanocomposites 25
Zhao, S., Malfait, W. J., Yao, C. J., Liu, X., Koebel, M. M., & Risen, W. M. (2023). Biopolymer-silica aerogel nanocomposites 25. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer handbooks. Springer handbook of aerogels (pp. 653-675). https://doi.org/10.1007/978-3-030-27322-4_25
Silica-resorcinol-melamine-formaldehyde composite aerogels as high-performance thermal insulators
Civioc, R., Malfait, W. J., Lattuada, M., Koebel, M. M., & Galmarini, S. (2022). Silica-resorcinol-melamine-formaldehyde composite aerogels as high-performance thermal insulators. ACS Omega, 7(17), 14478-14489. https://doi.org/10.1021/acsomega.1c04462
Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal
Drdova, S., Zhao, S., Giannakou, M., Sivaraman, D., Guerrero-Alburquerque, N., Bonnin, A., … Wang, J. (2022). Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal. Advanced Science, 9(11), 2105819 (10 pp.). https://doi.org/10.1002/advs.202105819
Surfactant-free, flexible polymethylsilsesquioxane foams
Huber, L., Hauser, S. B., Ubert, C. J., Rees, M., Fischer, B., Zhao, S., … Malfait, W. J. (2022). Surfactant-free, flexible polymethylsilsesquioxane foams. Journal of Non-Crystalline Solids, 597, 121887 (8 pp.). https://doi.org/10.1016/j.jnoncrysol.2022.121887
Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites
Kantor, Z., Wu, T., Zeng, Z., Gaan, S., Lehner, S., Jovic, M., … Zhao, S. (2022). Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites. Chemical Engineering Journal, 443, 136401 (11 pp.). https://doi.org/10.1016/j.cej.2022.136401
Multiple assembly strategies for silica aerogel-fiber combinations - a review
Mazrouei-Sebdani, Z., Naeimirad, M., Peterek, S., Begum, H., Galmarini, S., Pursche, F., … Malfait, W. J. (2022). Multiple assembly strategies for silica aerogel-fiber combinations - a review. Materials and Design, 223, 111228 (32 pp.). https://doi.org/10.1016/j.matdes.2022.111228
Anomalous density, sound velocity, and structure of pressure-induced amorphous quartz
Petitgirard, S., Sahle, C. J., Malfait, W. J., Spiekermann, G., Blanchard, I., Jennings, E. S., … Murakami, M. (2022). Anomalous density, sound velocity, and structure of pressure-induced amorphous quartz. Physical Review B, 105(13), 134106 (11 pp.). https://doi.org/10.1103/PhysRevB.105.134106
Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment
Sivaraman, D., Siqueira, G., Maurya, A. K., Zhao, S., Koebel, M. M., Nyström, G., … Malfait, W. J. (2022). Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment. Carbohydrate Polymers, 292, 119675 (11 pp.). https://doi.org/10.1016/j.carbpol.2022.119675
 

Pages