Active Filters

  • (-) Empa Authors = Reber, David
  • (-) Keywords ≠ bis(fluorosulfonyl)imide
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
“Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries
Kühnel, R. S., Reber, D., Remhof, A., Figi, R., Bleiner, D., & Battaglia, C. (2016). “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries. Chemical Communications, 52(68), 10435-10438. https://doi.org/10.1039/C6CC03969C
A high-voltage aqueous electrolyte for sodium-ion batteries
Kühnel, R. S., Reber, D., & Battaglia, C. (2017). A high-voltage aqueous electrolyte for sodium-ion batteries. ACS Energy Letters, 2(9), 2005-2006. https://doi.org/10.1021/acsenergylett.7b00623
High-voltage aqueous supercapacitors based on NaTFSI
Reber, D., Kühnel, R. S., & Battaglia, C. (2017). High-voltage aqueous supercapacitors based on NaTFSI. Sustainable Energy and Fuels, 1(10), 2155-2161. https://doi.org/10.1039/C7SE00423K
Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries
Reber, D., Kühnel, R. S., & Battaglia, C. (2019). Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries. ACS Materials Letters, 1(1), 44-51. https://doi.org/10.1021/acsmaterialslett.9b00043
Perspective-electrochemical stability of water-in-salt electrolytes
Kühnel, R. S., Reber, D., & Battaglia, C. (2020). Perspective-electrochemical stability of water-in-salt electrolytes. Journal of the Electrochemical Society, 167(7), 070544 (4 pp.). https://doi.org/10.1149/1945-7111/ab7c6f
Impact of anion asymmetry on local structure and supercooling behavior of water-in-salt electrolytes
Reber, D., Takenaka, N., Kühnel, R. S., Yamada, A., & Battaglia, C. (2020). Impact of anion asymmetry on local structure and supercooling behavior of water-in-salt electrolytes. Journal of Physical Chemistry Letters, 11(12), 4720-4725. https://doi.org/10.1021/acs.jpclett.0c00806
4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface
Asakura, R., Reber, D., Duchêne, L., Payandeh, S., Remhof, A., Hagemann, H., & Battaglia, C. (2020). 4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface. Energy and Environmental Science, 13(12), 5048-5058. https://doi.org/10.1039/D0EE01569E
Anion selection criteria for water-in-salt electrolytes
Reber, D., Grissa, R., Becker, M., Kühnel, R. S., & Battaglia, C. (2021). Anion selection criteria for water-in-salt electrolytes. Advanced Energy Materials, 11(5), 2002913 (10 pp.). https://doi.org/10.1002/aenm.202002913
The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes
Becker, M., Rentsch, D., Reber, D., Aribia, A., Battaglia, C., & Kühnel, R. S. (2021). The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes. Angewandte Chemie International Edition, 60, 14100-14108. https://doi.org/10.1002/anie.202103375
Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries
Reber, D., Borodin, O., Becker, M., Rentsch, D., Thienenkamp, J. H., Grissa, R., … Kühnel, R. ‐S. (2022). Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries. Advanced Functional Materials, 32(20), 2112138 (13 pp.). https://doi.org/10.1002/adfm.202112138
Disparate redox potentials in mixed isomer electrolytes reduce voltage efficiency of energy dense flow batteries
Davis, C. M., Waters, S. E., Robb, B. H., Thurston, J. R., Reber, D., & Marshak, M. P. (2023). Disparate redox potentials in mixed isomer electrolytes reduce voltage efficiency of energy dense flow batteries. Batteries, 9(12), 573 (9 pp.). https://doi.org/10.3390/batteries9120573