Active Filters

  • (-) Empa Authors = Battaglia, Corsin
Search Results 1 - 20 of 63

Pages

  • RSS Feed
Select Page
Analysis of c-lattice parameters to evaluate Na<sub>2</sub>O loss from and Na<sub>2</sub>O content in β''-alumina ceramics
Bay, M. C., Heinz, M. V. F., Danilewsky, A. N., Battaglia, C., & Vogt, U. F. (2021). Analysis of c-lattice parameters to evaluate Na2O loss from and Na2O content in β''-alumina ceramics. Ceramics International, 47(10), 13402-13408. https://doi.org/10.1016/j.ceramint.2021.01.197
The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes
Becker, M., Rentsch, D., Reber, D., Aribia, A., Battaglia, C., & Kühnel, R. S. (2021). The hydrotropic effect of ionic liquids in water‐in‐salt electrolytes. Angewandte Chemie International Edition. https://doi.org/10.1002/anie.202103375
Impact of protonation on the electrochemical performance of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> garnets
Grissa, R., Payandeh, S., Heinz, M., & Battaglia, C. (2021). Impact of protonation on the electrochemical performance of Li7La3Zr2O12 garnets. ACS Applied Materials and Interfaces, 13(12), 14700-14709. https://doi.org/10.1021/acsami.0c23144
Na&lt;sub&gt;2&lt;/sub&gt;ZrCl&lt;sub&gt;6&lt;/sub&gt; enabling highly stable 3 V all-solid-state Na-ion batteries
Kwak, H., Lyoo, J., Park, J., Han, Y., Asakura, R., Remhof, A., … Jung, Y. S. (2021). Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries. Energy Storage Materials, 37, 47-54. https://doi.org/10.1016/j.ensm.2021.01.026
Lithium-ion transport in Li&lt;sub&gt;4&lt;/sub&gt;Ti&lt;sub&gt;5&lt;/sub&gt;O&lt;sub&gt;12&lt;/sub&gt; epitaxial thin films vs. state of charge
Pagani, F., Döbeli, M., & Battaglia, C. (2021). Lithium-ion transport in Li4Ti5O12 epitaxial thin films vs. state of charge. Batteries and Supercaps, 4(2), 316-321. https://doi.org/10.1002/batt.202000159
&lt;em&gt;Nido&lt;/em&gt;‐hydroborate‐based electrolytes for all‐solid‐state lithium batteries
Payandeh, S. H., Rentsch, D., Łodziana, Z., Asakura, R., Bigler, L., Černý, R., … Remhof, A. (2021). Nido‐hydroborate‐based electrolytes for all‐solid‐state lithium batteries. Advanced Functional Materials. https://doi.org/10.1002/adfm.202010046
Anion selection criteria for water-in-salt electrolytes
Reber, D., Grissa, R., Becker, M., Kühnel, R. S., & Battaglia, C. (2021). Anion selection criteria for water-in-salt electrolytes. Advanced Energy Materials, 11(5), 2002913 (10 pp.). https://doi.org/10.1002/aenm.202002913
Electrochemical CO&lt;sub&gt;2&lt;/sub&gt; reduction at room temperature: Status and perspectives
Senocrate, A., & Battaglia, C. (2021). Electrochemical CO2 reduction at room temperature: Status and perspectives. Journal of Energy Storage, 36, 102373 (7 pp.). https://doi.org/10.1016/j.est.2021.102373
Na electrodeposits: a new decaying mechanism for all-solid-state Na batteries revealed by synchrotron X-ray tomography
Sun, F., Duchêne, L., Osenberg, M., Risse, S., Yang, C., Chen, L., … Chen, R. (2021). Na electrodeposits: a new decaying mechanism for all-solid-state Na batteries revealed by synchrotron X-ray tomography. Nano Energy, 82, 105762 (5 pp.). https://doi.org/10.1016/j.nanoen.2021.105762
4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface
Asakura, R., Reber, D., Duchêne, L., Payandeh, S., Remhof, A., Hagemann, H., & Battaglia, C. (2020). 4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface. Energy and Environmental Science, 13(12), 5048-5058. https://doi.org/10.1039/D0EE01569E
Impact of sintering conditions and zirconia addition on flexural strength and ion conductivity of Na-β&quot;-alumina ceramics
Bay, M. C., Heinz, M. V. F., Linte, C., German, A., Blugan, G., Battaglia, C., & Vogt, U. F. (2020). Impact of sintering conditions and zirconia addition on flexural strength and ion conductivity of Na-β"-alumina ceramics. Materials Today Communications, 23, 101118 (7 pp.). https://doi.org/10.1016/j.mtcomm.2020.101118
Sodium plating from Na‐&lt;em&gt;β&lt;/em&gt;&quot;‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries
Bay, M. ‐C., Wang, M., Grissa, R., Heinz, M. V. F., Sakamoto, J., & Battaglia, C. (2020). Sodium plating from Na‐β"‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Advanced Energy Materials, 10(3), 1902899 (8 pp.). https://doi.org/10.1002/aenm.201902899
Crystallization of &lt;em&gt;closo&lt;/em&gt;-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries
Duchêne, L., Kim, D. H., Song, Y. B., Jun, S., Moury, R., Remhof, A., … Battaglia, C. (2020). Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries. Energy Storage Materials, 26, 543-549. https://doi.org/10.1016/j.ensm.2019.11.027
Status and prospects of hydroborate electrolytes for all-solid-state batteries
Duchêne, L., Remhof, A., Hagemann, H., & Battaglia, C. (2020). Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Materials, 25, 782-794. https://doi.org/10.1016/j.ensm.2019.08.032
Polymer-inorganic nanocomposite coating with high ionic conductivity and transference number for a stable lithium metal anode
Fu, C., & Battaglia, C. (2020). Polymer-inorganic nanocomposite coating with high ionic conductivity and transference number for a stable lithium metal anode. ACS Applied Materials and Interfaces, 12(37), 41620-41626. https://doi.org/10.1021/acsami.0c13485
Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery
Heinz, M. V. F., Graeber, G., Landmann, D., & Battaglia, C. (2020). Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery. Journal of Power Sources, 465, 228268 (7 pp.). https://doi.org/10.1016/j.jpowsour.2020.228268
Conformal Cu coating on electrospun nanofibers for 3D electro‐conductive networks
Jiang, F., Ju, W., Pan, Z., Lin, L., Yue, Y., Zhao, Y. ‐B., … Wang, J. (2020). Conformal Cu coating on electrospun nanofibers for 3D electro‐conductive networks. Advanced Electronic Materials, 6(2), 1900767 (11 pp.). https://doi.org/10.1002/aelm.201900767
Perspective-electrochemical stability of water-in-salt electrolytes
Kühnel, R. S., Reber, D., & Battaglia, C. (2020). Perspective-electrochemical stability of water-in-salt electrolytes. Journal of the Electrochemical Society, 167(7), 070544 (4 pp.). https://doi.org/10.1149/1945-7111/ab7c6f
Sodium plating and stripping from Na-β&quot;-alumina ceramics beyond 1000 mA/cm&lt;sup&gt;2&lt;/sup&gt;
Landmann, D., Graeber, G., Heinz, M. V. F., Haussener, S., & Battaglia, C. (2020). Sodium plating and stripping from Na-β"-alumina ceramics beyond 1000 mA/cm2. Materials Today Energy, 18, 100515 (8 pp.). https://doi.org/10.1016/j.mtener.2020.100515
Large planar Na-β&quot;-Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; solid electrolytes for next generation Na-Batteries
Ligon, S. C., Bay, M. ‐C., Heinz, M. V. F., Battaglia, C., Graule, T., & Blugan, G. (2020). Large planar Na-β"-Al2O3 solid electrolytes for next generation Na-Batteries. Materials, 13(2), 433 (10 pp.). https://doi.org/10.3390/ma13020433
 

Pages