| Mitigating first-cycle capacity losses in NMC811 via lithicone layers grown by molecular layer deposition
Egorov, K., Zhao, W., Knemeyer, K., Filippin, A. N., Giraldo, A., & Battaglia, C. (2023). Mitigating first-cycle capacity losses in NMC811 via lithicone layers grown by molecular layer deposition. ACS Applied Materials and Interfaces, 15(16), 20075-20080. https://doi.org/10.1021/acsami.2c23158 |
| Elucidating the pressure-induced enhancement of ionic conductivity in sodium <em>closo</em>-hydroborate electrolytes for all-solid-state batteries
Huang, Y., Černý, R., Battaglia, C., & Remhof, A. (2023). Elucidating the pressure-induced enhancement of ionic conductivity in sodium closo-hydroborate electrolytes for all-solid-state batteries. Journal of Materials Science, 58(17), 7398-7406. https://doi.org/10.1007/s10853-022-08121-8 |
| Planar sodium-nickel chloride batteries with high areal capacity for sustainable energy storage
Lan, T., Graeber, G., Sieuw, L., Svaluto-Ferro, E., Vagliani, F., Basso, D., … Heinz, M. V. F. (2023). Planar sodium-nickel chloride batteries with high areal capacity for sustainable energy storage. Advanced Functional Materials. https://doi.org/10.1002/adfm.202302040 |
| Eliminating flooding-related issues in electrochemical CO<sub>₂</sub>-to-CO converters: two lines of defense
Vesztergom, S., Senocrate, A., Kong, Y., Kolivoška, V., Bernasconi, F., Zboray, R., … Broekmann, P. (2023). Eliminating flooding-related issues in electrochemical CO₂-to-CO converters: two lines of defense. Chimia, 77(3), 104 (6 pp.). https://doi.org/10.2533/chimia.2023.104 |
| Flexible and ultrathin waterproof conductive cellular membranes based on conformally gold-coated PVDF nanofibers and their potential as gas diffusion electrode
Yu, R., Senocrate, A., Bernasconi, F., Künniger, T., Müller, L., Pauer, R., … Wang, J. (2023). Flexible and ultrathin waterproof conductive cellular membranes based on conformally gold-coated PVDF nanofibers and their potential as gas diffusion electrode. Materials and Design, 225, 111441 (11 pp.). https://doi.org/10.1016/j.matdes.2022.111441 |
| Extending the high-voltage operation of graphite/NCM811 cells by constructing a robust electrode/electrolyte interphase layer
Zhao, W., Wang, K., Dubey, R., Ren, F., Brack, E., Becker, M., … Battaglia, C. (2023). Extending the high-voltage operation of graphite/NCM811 cells by constructing a robust electrode/electrolyte interphase layer. Materials Today Energy, 34, 101301 (11 pp.). https://doi.org/10.1016/j.mtener.2023.101301 |
| Hydroborate-based solid electrolytes for all-solid-state batteries
Asakura, R., Remhof, A., & Battaglia, C. (2022). Hydroborate-based solid electrolytes for all-solid-state batteries. In R. K. Gupta (Ed.), ACS symposium series: Vol. 1413. Solid state batteries. Volume 1: emerging materials and applications (pp. 353-393). https://doi.org/10.1021/bk-2022-1413.ch014 |
| Low Na-<em>β</em>′′-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries
Bay, M. C., Grissa, R., Egorov, K. V., Asakura, R., & Battaglia, C. (2022). Low Na-β′′-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries. Materials Futures, 1(3), 031001 (8 p.). https://doi.org/10.1088/2752-5724/ac8947 |
| Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes
Becker, M., Zhao, W., Pagani, F., Schreiner, C., Figi, R., Dachraoui, W., … Battaglia, C. (2022). Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes. ACS Applied Energy Materials, 5(9), 11133-11141. https://doi.org/10.1021/acsaem.2c01722 |
| A polymerized‐ionic‐liquid‐based polymer electrolyte with high oxidative stability for 4 and 5 V class solid‐state lithium metal batteries
Fu, C., Homann, G., Grissa, R., Rentsch, D., Zhao, W., Gouveia, T., … Battaglia, C. (2022). A polymerized‐ionic‐liquid‐based polymer electrolyte with high oxidative stability for 4 and 5 V class solid‐state lithium metal batteries. Advanced Energy Materials, 12(27), 2200412 (10 pp.). https://doi.org/10.1002/aenm.202200412 |
| Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12 </sub>protonation as a means to generate porous/dense/porous-structured electrolytes for all-solid-state lithium-metal batteries
Grissa, R., Seidl, L., Dachraoui, W., Sauter, U., & Battaglia, C. (2022). Li7La3Zr2O12 protonation as a means to generate porous/dense/porous-structured electrolytes for all-solid-state lithium-metal batteries. ACS Applied Materials and Interfaces, 14(40), 46001-46009. https://doi.org/10.1021/acsami.2c11375 |
| Elucidating the rate-limiting processes in high-temperature sodium-metal chloride batteries
Landmann, D., Svaluto-Ferro, E., Heinz, M. V. F., Schmutz, P., & Battaglia, C. (2022). Elucidating the rate-limiting processes in high-temperature sodium-metal chloride batteries. Advanced Science, 9(17), 2201019 (8 pp.). https://doi.org/10.1002/advs.202201019 |
| Electrolytes with flame retardant pentafluoro(phenoxy)cyclotriphosphazene for nickel-rich layered oxide/graphite cells
Nilsson, V., Liu, S., Battaglia, C., & Kühnel, R. S. (2022). Electrolytes with flame retardant pentafluoro(phenoxy)cyclotriphosphazene for nickel-rich layered oxide/graphite cells. Electrochimica Acta, 427, 140867 (6 pp.). https://doi.org/10.1016/j.electacta.2022.140867 |
| Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries
Reber, D., Borodin, O., Becker, M., Rentsch, D., Thienenkamp, J. H., Grissa, R., … Kühnel, R. ‐S. (2022). Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries. Advanced Functional Materials, 32(20), 2112138 (13 pp.). https://doi.org/10.1002/adfm.202112138 |
| Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries
Seidl, L., Grissa, R., Zhang, L., Trabesinger, S., & Battaglia, C. (2022). Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries. Advanced Materials Interfaces, 9(8), 2100704 (10 pp.). https://doi.org/10.1002/admi.202100704 |
| Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO<sub>2</sub> reduction
Senocrate, A., Bernasconi, F., Rentsch, D., Kraft, K., Trottmann, M., Wichser, A., … Battaglia, C. (2022). Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO2 reduction. ACS Applied Energy Materials, 5(11), 14504-14512. https://doi.org/10.1021/acsaem.2c03054 |
| Highly reversible Li<sub>2</sub>RuO<sub>3</sub> cathodes in sulfide-based all solid-state lithium batteries
Wu, Y., Zhou, K., Ren, F., Ha, Y., Liang, Z., Zheng, X., … Yang, Y. (2022). Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Energy and Environmental Science, 15(8), 3470 (13 pp.). https://doi.org/10.1039/d2ee01067d |
| Assessing long-term cycling stability of single-crystal versus polycrystalline nickel-rich NCM in pouch cells with 6 mAh cm<sup>-2</sup> electrodes
Zhao, W., Zou, L., Zhang, L., Fan, X., Zhang, H., Pagani, F., … Battaglia, C. (2022). Assessing long-term cycling stability of single-crystal versus polycrystalline nickel-rich NCM in pouch cells with 6 mAh cm-2 electrodes. Small, 18(14), 2107357 (10 pp.). https://doi.org/10.1002/smll.202107357 |
| A nearly zero-strain Li-rich rock-salt oxide with multielectron redox reactions as a cathode for Li-ion batteries
Zhou, K., Li, Y., Ha, Y., Zhang, M., Dachraoui, W., Liu, H., … Yang, Y. (2022). A nearly zero-strain Li-rich rock-salt oxide with multielectron redox reactions as a cathode for Li-ion batteries. Chemistry of Materials, 34(21), 9711-9721. https://doi.org/10.1021/acs.chemmater.2c02519 |
| Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries
Asakura, R., Duchêne, L., Payandeh, S., Rentsch, D., Hagemann, H., Battaglia, C., & Remhof, A. (2021). Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries. ACS Applied Materials and Interfaces, 13, 55319-55328. https://doi.org/10.1021/acsami.1c15246 |