Active Filters

  • (-) Empa Authors = Remhof, Arndt
Search Results 1 - 20 of 116

Pages

  • RSS Feed
Select Page
Hydroborate-based solid electrolytes for all-solid-state batteries
Asakura, R., Remhof, A., & Battaglia, C. (2022). Hydroborate-based solid electrolytes for all-solid-state batteries. In R. K. Gupta (Ed.), ACS symposium series: Vol. 1413. Solid state batteries. Volume 1: emerging materials and applications (pp. 353-393). https://doi.org/10.1021/bk-2022-1413.ch014
Study of the temperature- and pressure-dependent structural properties of alkali hydrido-<em>closo</em>-borate compounds
Moury, R., Łodziana, Z., Remhof, A., Duchêne, L., Roedern, E., Gigante, A., & Hagemann, H. (2022). Study of the temperature- and pressure-dependent structural properties of alkali hydrido-closo-borate compounds. Inorganic Chemistry, 61(13), 5224-5233. https://doi.org/10.1021/acs.inorgchem.1c03681
Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond
Sheima, Y., von Szczepanski, J., Danner, P. M., Künniger, T., Remhof, A., Frauenrath, H., & Opris, D. M. (2022). Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond. ACS Applied Materials and Interfaces, 14(35), 40257-40265. https://doi.org/10.1021/acsami.2c05631
Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries
Asakura, R., Duchêne, L., Payandeh, S., Rentsch, D., Hagemann, H., Battaglia, C., & Remhof, A. (2021). Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries. ACS Applied Materials and Interfaces, 13, 55319-55328. https://doi.org/10.1021/acsami.1c15246
A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries
Fu, C., Iacob, M., Sheima, Y., Battaglia, C., Duchêne, L., Seidl, L., … Remhof, A. (2021). A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 9(19), 11794-11801. https://doi.org/10.1039/D1TA02689E
Structural and dynamic studies of Pr(<sup>11</sup>BH<sub>4</sub>)<sub>3</sub>
Gigante, A., Payandeh, S., Grinderslev, J. B., Heere, M., Embs, J. P., Jensen, T. R., … Hagemann, H. (2021). Structural and dynamic studies of Pr(11BH4)3. International Journal of Hydrogen Energy, 46(63), 32126-32134. https://doi.org/10.1016/j.ijhydene.2021.06.232
Na<sub>2</sub>ZrCl<sub>6</sub> enabling highly stable 3 V all-solid-state Na-ion batteries
Kwak, H., Lyoo, J., Park, J., Han, Y., Asakura, R., Remhof, A., … Jung, Y. S. (2021). Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries. Energy Storage Materials, 37, 47-54. https://doi.org/10.1016/j.ensm.2021.01.026
<em>Nido</em>‐hydroborate‐based electrolytes for all‐solid‐state lithium batteries
Payandeh, S. H., Rentsch, D., Łodziana, Z., Asakura, R., Bigler, L., Černý, R., … Remhof, A. (2021). Nido‐hydroborate‐based electrolytes for all‐solid‐state lithium batteries. Advanced Functional Materials, 31(18), 2010046 (12 pp.). https://doi.org/10.1002/adfm.202010046
Hydroborates as novel solid-state electrolytes
Remhof, A., & Černý, R. (2021). Hydroborates as novel solid-state electrolytes. In S. Schorr & C. Weidenthaler (Eds.), De Gruyter STEM. Crystallography in materials science. From structure-property relationships to engineering (pp. 265-289). https://doi.org/10.1515/9783110674910-008
Na electrodeposits: a new decaying mechanism for all-solid-state Na batteries revealed by synchrotron X-ray tomography
Sun, F., Duchêne, L., Osenberg, M., Risse, S., Yang, C., Chen, L., … Chen, R. (2021). Na electrodeposits: a new decaying mechanism for all-solid-state Na batteries revealed by synchrotron X-ray tomography. Nano Energy, 82, 105762 (5 pp.). https://doi.org/10.1016/j.nanoen.2021.105762
4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface
Asakura, R., Reber, D., Duchêne, L., Payandeh, S., Remhof, A., Hagemann, H., & Battaglia, C. (2020). 4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface. Energy and Environmental Science, 13(12), 5048-5058. https://doi.org/10.1039/D0EE01569E
Crystallization of &lt;em&gt;closo&lt;/em&gt;-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries
Duchêne, L., Kim, D. H., Song, Y. B., Jun, S., Moury, R., Remhof, A., … Battaglia, C. (2020). Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries. Energy Storage Materials, 26, 543-549. https://doi.org/10.1016/j.ensm.2019.11.027
Status and prospects of hydroborate electrolytes for all-solid-state batteries
Duchêne, L., Remhof, A., Hagemann, H., & Battaglia, C. (2020). Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Materials, 25, 782-794. https://doi.org/10.1016/j.ensm.2019.08.032
Experimental investigation of Mg(B&lt;sub&gt;3&lt;/sub&gt;H&lt;sub&gt;8&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; dimensionality, materials for energy storage applications
Moury, R., Gigante, A., Remhof, A., Roedern, E., & Hagemann, H. (2020). Experimental investigation of Mg(B3H8)2 dimensionality, materials for energy storage applications. Dalton Transactions, 49(35), 12168-12173. https://doi.org/10.1039/D0DT02170A
Beyond hydrogen storage—metal hydrides as multifunctional materials for energy storage and conversion
Møller, K. T., Sargent, A. L., Remhof, A., & Heere, M. (2020). Beyond hydrogen storage—metal hydrides as multifunctional materials for energy storage and conversion. Inorganics, 8(11), 58 (5 pp.). https://doi.org/10.3390/inorganics8110058
&lt;em&gt;Nido&lt;/em&gt;-Borate/&lt;em&gt;Closo&lt;/em&gt;-borate mixed-anion electrolytes for all-solid-state batteries
Payandeh, S. H., Asakura, R., Avramidou, P., Rentsch, D., Łodziana, Z., Černý, R., … Battaglia, C. (2020). Nido-Borate/Closo-borate mixed-anion electrolytes for all-solid-state batteries. Chemistry of Materials, 32, 1101-1110. https://doi.org/10.1021/acs.chemmater.9b03933
Solid-state magnesium-ion conductors
Payandeh, S., Remhof, A., & Battaglia, C. (2020). Solid-state magnesium-ion conductors. In M. Fichtner (Ed.), Energy and environment series: Vol. 23. Magnesium batteries: research and applications (pp. 60-78). https://doi.org/10.1039/9781788016407-00060
Electrochemical oxidative stability of hydroborate-based solid-state electrolytes
Asakura, R., Duchêne, L., Kühnel, R. S., Remhof, A., Hagemann, H., & Battaglia, C. (2019). Electrochemical oxidative stability of hydroborate-based solid-state electrolytes. ACS Applied Energy Materials, 2(9), 6924-6930. https://doi.org/10.1021/acsaem.9b01487
Ionic conduction mechanism in the Na&lt;sub&gt;2&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)&lt;sub&gt;0.5&lt;/sub&gt;(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;)&lt;sub&gt;0.5 &lt;/sub&gt;&lt;em&gt;closo&lt;/em&gt;-borate
Duchêne, L., Lunghammer, S., Burankova, T., Liao, W. C., Embs, J. P., Copéret, C., … Battaglia, C. (2019). Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: interplay of disorder and ion–ion interactions. Chemistry of Materials, 31(9), 3449-3460. https://doi.org/10.1021/acs.chemmater.9b00610
Direct solution‐based synthesis of the Na&lt;sub&gt;4&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;) solid electrolyte
Gigante, A., Duchêne, L., Moury, R., Pupier, M., Remhof, A., & Hagemann, H. (2019). Direct solution‐based synthesis of the Na4(B12H12)(B10H10) solid electrolyte. ChemSusChem, 12(21), 4832-4837. https://doi.org/10.1002/cssc.201902152
 

Pages