Active Filters

  • (-) Empa Authors = Rotaru, Gelu M.
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing
Qu, Y., Nguyen-Dang, T., Page, A. G., Yan, W., Das Gupta, T., Rotaru, G. M., … Sorin, F. (2018). Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Advanced Materials, 30(27), 1707251 (8 pp.). https://doi.org/10.1002/adma.201707251
A water-responsive, gelatine-based human skin model
Dąbrowska, A., Rotaru, G. M., Spano, F., Affolter, C., Fortunato, G., Lehmann, S., … Rossi, R. M. (2017). A water-responsive, gelatine-based human skin model. Tribology International, 113, 316-322. https://doi.org/10.1016/j.triboint.2017.01.027
Steering surface topographies of electrospun fibers: understanding the mechanisms
Yazgan, G., Dmitriev, R. I., Tyagi, V., Jenkins, J., Rotaru, G. M., Rottmar, M., … Fortunato, G. (2017). Steering surface topographies of electrospun fibers: understanding the mechanisms. Scientific Reports, 7, 158 (13 pp.). https://doi.org/10.1038/s41598-017-00181-0
<em>In vivo</em> confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment
Dąbrowska, A. K., Adlhart, C., Spano, F., Rotaru, G. M., Derler, S., Zhai, L., … Rossi, R. M. (2016). In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment. Biointerphases: A Journal of Biomaterials and Biological Interfaces, 11(3), 031015 (10 pp.). https://doi.org/10.1116/1.4962547
Materials used to simulate physical properties of human skin
Dąbrowska, A. K., Rotaru, G. M., Derler, S., Spano, F., Camenzind, M., Annaheim, S., … Rossi, R. M. (2016). Materials used to simulate physical properties of human skin. Skin Research and Technology, 22(1), 3-14. https://doi.org/10.1111/srt.12235
Friction mechanisms and abrasion of the human finger pad in contact with rough surfaces
Derler, S., Preiswerk, M., Rotaru, G. M., Kaiser, J. P., & Rossi, R. M. (2015). Friction mechanisms and abrasion of the human finger pad in contact with rough surfaces. Tribology International, 89, 119-127. https://doi.org/10.1016/j.triboint.2014.12.023
Understanding the variation of friction coefficients of human skin as a function of skin hydration and interfacial water films
Derler, S., Rossi, R. M., & Rotaru, G. M. (2015). Understanding the variation of friction coefficients of human skin as a function of skin hydration and interfacial water films. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229(3), 285-293. https://doi.org/10.1177/1350650114527922
In vivo measurement of the friction between human skin and different medical compression stockings
Ke, W., Rotaru, G. M., Hu, J. Y., Rossi, R. M., Ding, X., & Derler, S. (2015). In vivo measurement of the friction between human skin and different medical compression stockings. Tribology Letters, 60, 4 (9 pp.). https://doi.org/10.1007/s11249-015-0580-8
Microscopic contact area and friction between medical textiles and skin
Derler, S., Rotaru, G. M., Ke, W., El Issawi-Frischknecht, L., Kellenberger, P., Scheel-Sailer, A., & Rossi, R. M. (2014). Microscopic contact area and friction between medical textiles and skin. Journal of the Mechanical Behavior of Biomedical Materials, 38, 114-125. https://doi.org/10.1016/j.jmbbm.2014.06.014
Relationship between the friction and microscopic contact behavior of a medical compression stocking at different strains
Ke, W., Rotaru, G. M., Hu, J. Y., Ding, X., Rossi, R. M., & Derler, S. (2014). Relationship between the friction and microscopic contact behavior of a medical compression stocking at different strains. Tribology Letters, 56(3), 457-470. https://doi.org/10.1007/s11249-014-0422-0
Influence of variations in the pressure distribution on the friction of the finger pad
Derler, S., Süess, J., Rao, A., & Rotaru, G. M. (2013). Influence of variations in the pressure distribution on the friction of the finger pad. Tribology International, 63, 14-20. https://doi.org/10.1016/j.triboint.2012.03.001
Stick-slip phenomena in the friction of human skin
Derler, S., & Rotaru, G. M. (2013). Stick-slip phenomena in the friction of human skin. Wear, 301(1-2), 324-329. https://doi.org/10.1016/j.wear.2012.11.030
Friction between human skin and medical textiles for decubitus prevention
Rotaru, G. M., Pille, D., Lehmeier, F. K., Stämpfli, R., Scheel-Sailer, A., Rossi, R. M., & Derler, S. (2013). Friction between human skin and medical textiles for decubitus prevention. Tribology International, 65, 91-96. https://doi.org/10.1016/j.triboint.2013.02.005
Influence of intermolecular interactions and size effect on LITH-FORC diagram in 1D spin crossover compounds
Rotaru, A., Graur, A., Rotaru, G. M., Linares, J., & Garcia, Y. (2012). Influence of intermolecular interactions and size effect on LITH-FORC diagram in 1D spin crossover compounds. Journal of Optoelectronics and Advanced Materials, 14(5-6), 529-536.