Active Filters

  • (-) Empa Authors = Rüggeberg, Markus
Search Results 1 - 20 of 40
Select Page
Quasi-static and fatigue performance of bonded acetylated rubberwood (<em>Hevea brasiliensis</em>, Müll. Arg.)
Olaniran, S. O., Clerc, G., Cabane, E., Brunner, A. J., & Rüggeberg, M. (2021). Quasi-static and fatigue performance of bonded acetylated rubberwood (Hevea brasiliensis, Müll. Arg.). European Journal of Wood and Wood Products, 79, 49-58. https://doi.org/10.1007/s00107-020-01610-0
Kinematics governing mechanotransduction in the sensory hair of the <em>Venus flytrap</em>
Saikia, E., Läubli, N. F., Burri, J. T., Rüggeberg, M., Vogler, H., Burgert, I., … Wittel, F. K. (2021). Kinematics governing mechanotransduction in the sensory hair of the Venus flytrap. International Journal of Molecular Sciences, 22(1), 280 (21 pp.). https://doi.org/10.3390/ijms22010280
A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure
Burri, J. T., Saikia, E., Läubli, N. F., Vogler, H., Wittel, F. K., Rüggeberg, M., … Grossniklaus, U. (2020). A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLoS Biology, 18(7), e3000740 (19 pp.). https://doi.org/10.1371/journal.pbio.3000740
CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen
Bünder, A., Sundman, O., Mahboubi, A., Persson, S., Mansfield, S. D., Rüggeberg, M., & Niittylä, T. (2020). CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. Plant Journal, 103, 1858-1868. https://doi.org/10.1111/tpj.14873
Computational analysis of hygromorphic self-shaping wood gridshell structures
Grönquist, P., Panchadcharam, P., Wood, D., Menges, A., Rüggeberg, M., & Wittel, F. K. (2020). Computational analysis of hygromorphic self-shaping wood gridshell structures. Royal Society Open Science, 7(7), 192210 (9 pp.). https://doi.org/10.1098/rsos.192210
Wood derived cellulose scaffolds - processing and mechanics
Keplinger, T., Wittel, F. K., Rüggeberg, M., & Burgert, I. (2020). Wood derived cellulose scaffolds - processing and mechanics. Advanced Materials. https://doi.org/10.1002/adma.202001375
Towards detection of helical orientated cellulose structures in wood using THz time-domain spectroscopy
Cao, J., Rüggeberg, M., & Zolliker, P. (2019). Towards detection of helical orientated cellulose structures in wood using THz time-domain spectroscopy. In 2019 44th international conference on infrared, millimeter, and terahertz waves (IRMMW-THz) (p. (2 pp.). https://doi.org/10.1109/IRMMW-THz.2019.8873693
Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures
Grönquist, P., Wood, D., Hassani, M. M., Wittel, F. K., Menges, A., & Rüggeberg, M. (2019). Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 5(9), eaax1311 (7 pp.). https://doi.org/10.1126/sciadv.aax1311
Investigations on densified beech wood for application as a swelling dowel in timber joints
Grönquist, P., Schnider, T., Thoma, A., Gramazio, F., Kohler, M., Burgert, I., & Rüggeberg, M. (2019). Investigations on densified beech wood for application as a swelling dowel in timber joints. Holzforschung, 73(6), 559-568. https://doi.org/10.1515/hf-2018-0106
Mechanical behavior of chemically modified Norway spruce: a generic hierarchical model for wood modifications
Mora Mendez, D. F., Oluyinka Olaniran, S., Rüggeberg, M., Burgert, I., Herrmann, H. J., & Wittel, F. K. (2019). Mechanical behavior of chemically modified Norway spruce: a generic hierarchical model for wood modifications. Wood Science and Technology, 53(2), 447-467. https://doi.org/10.1007/s00226-019-01082-3
Mechanical behaviour of acetylated rubber wood subjected to artificial weathering
Olaniran, S. O., Etienne, C., Keplinger, T., Olufemi, B., & Rüggeberg, M. (2019). Mechanical behaviour of acetylated rubber wood subjected to artificial weathering. Holzforschung, 73(11), 1005-1016. https://doi.org/10.1515/hf-2018-0274
Mechanical behaviour of chemically modified Norway spruce (<i>Picea abies</i> L. Karst.): experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene
Oluyinka Olaniran, S., Michen, B., Mora Mendez, D. F., Wittel, F. K., Bachtiar, E. V., Burgert, I., & Rüggeberg, M. (2019). Mechanical behaviour of chemically modified Norway spruce (Picea abies L. Karst.): experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene. Wood Science and Technology, 53(2), 425-445. https://doi.org/10.1007/s00226-019-01080-5
Ethylene signaling is required for fully functional tension wood in hybrid aspen
Seyfferth, C., Wessels, B. A., Gorzsás, A., Love, J. W., Rüggeberg, M., Delhomme, N., … Felten, J. (2019). Ethylene signaling is required for fully functional tension wood in hybrid aspen. Frontiers in Plant Science, 10, 1101 (17 pp.). https://doi.org/10.3389/fpls.2019.01101
Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions
Özparpucu, M., Gierlinger, N., Cesarino, I., Burgert, I., Boerjan, W., & Rüggeberg, M. (2019). Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions. Journal of Experimental Botany, 70(15), 4039-4047. https://doi.org/10.1093/jxb/erz180
Mechanical behavior of walnut (<i>Juglans regia</i> L.) and cherry (<i>Prunus avium</i> L.) wood in tension and compression in all anatomical directions. Revisiting the tensile/compressive stiffness ratios of wood
Bachtiar, E. V., Rüggeberg, M., & Niemz, P. (2018). Mechanical behavior of walnut (Juglans regia L.) and cherry (Prunus avium L.) wood in tension and compression in all anatomical directions. Revisiting the tensile/compressive stiffness ratios of wood. Holzforschung, 72(1), 71-80. https://doi.org/10.1515/hf-2017-0053
A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy
Casdorff, K., Keplinger, T., Rüggeberg, M., & Burgert, I. (2018). A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy. Planta, 247(5), 1123-1132. https://doi.org/10.1007/s00425-018-2850-9
Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen
Felten, J., Vahala, J., Love, J., Gorzsás, A., Rüggeberg, M., Delhomme, N., … Sundberg, B. (2018). Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen. New Phytologist, 218(3), 999-1014. https://doi.org/10.1111/nph.15078
Modeling and design of thin bending wooden bilayers
Grönquist, P., Wittel, F. K., & Rüggeberg, M. (2018). Modeling and design of thin bending wooden bilayers. PLoS One, 13(10), e0205607 (12 pp.). https://doi.org/10.1371/journal.pone.0205607
An autonomous shading system based on coupled wood bilayer elements
Vailati, C., Bachtiar, E., Hass, P., Burgert, I., & Rüggeberg, M. (2018). An autonomous shading system based on coupled wood bilayer elements. Energy and Buildings, 158, 1013-1022. https://doi.org/10.1016/j.enbuild.2017.10.042
The kinetics of wooden bilayers is not affected by different wood adhesive systems
Vailati, C., Rüggeberg, M., Burgert, I., & Hass, P. (2018). The kinetics of wooden bilayers is not affected by different wood adhesive systems. Wood Science and Technology, 52(6), 1589-1606. https://doi.org/10.1007/s00226-018-1046-6