Active Filters

  • (-) Empa Authors = Shevchik, Sergey
  • (-) Keywords ≠ additive manufacturing
Search Results 1 - 20 of 23
Select Page
Acoustic emission and machine learning for in situ monitoring of a gold-copper ore weakening by electric pulse
Meylan, B., Shevchik, S. A., Parvaz, D., Mosaddeghi, A., Simov, V., & Wasmer, K. (2021). Acoustic emission and machine learning for in situ monitoring of a gold-copper ore weakening by electric pulse. Journal of Cleaner Production, 280, 124348 (12 pp.). https://doi.org/10.1016/j.jclepro.2020.124348
Machine learning monitoring for laser osteotomy
Shevchik, S., Nguendon Kenhagho, H., Le-Quang, T., Faivre, N., Meylan, B., Guzman, R., … Wasmer, K. (2021). Machine learning monitoring for laser osteotomy. Journal of Biophotonics, 14(4), e202000352 (11 pp.). https://doi.org/10.1002/jbio.202000352
Monitoring of friction-related failures using diffusion maps of acoustic time series
Shevchik, S. A., Zanoli, S., Saeidi, F., Meylan, B., Flück, G., & Wasmer, K. (2021). Monitoring of friction-related failures using diffusion maps of acoustic time series. Mechanical Systems and Signal Processing, 148, 107172 (14 pp.). https://doi.org/10.1016/j.ymssp.2020.107172
Adaptive laser welding control: a reinforcement learning approach
Masinelli, G., Le-Quang, T., Zanoli, S., Wasmer, K., & Shevchik, S. A. (2020). Adaptive laser welding control: a reinforcement learning approach. IEEE Access, 8, 103803-103814. https://doi.org/10.1109/ACCESS.2020.2998052
Re-solidification dynamics and microstructural analysis of laser welded aluminium
Meylan, B., Le-Quang, T., Olbinado, M. P., Rack, A., Shevchik, S. A., & Wasmer, K. (2020). Re-solidification dynamics and microstructural analysis of laser welded aluminium. International Journal of Materials Research, 111(1), 17-22. https://doi.org/10.3139/146.111838
Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: a review
Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: a review. Journal of Manufacturing Processes, 57, 114-135. https://doi.org/10.1016/j.jmapro.2020.06.013
Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance
Shevchik, S., Le-Quang, T., Meylan, B., Vakili Farahani, F., Olbinado, M. P., Rack, A., … Wasmer, K. (2020). Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance. Scientific Reports, 10, 3389 (12 pp.). https://doi.org/10.1038/s41598-020-60294-x
Sensitivity analysis of acoustic emission detection using fiber bragg gratings with different optical fiber diameters
Violakis, G., Le-Quang, T., Shevchik, S. A., & Wasmer, K. (2020). Sensitivity analysis of acoustic emission detection using fiber bragg gratings with different optical fiber diameters. Sensors, 20(22), 6511 (11 pp.). https://doi.org/10.3390/s20226511
Characterization of ablated bone and muscle for long-pulsed laser ablation in dry and wet conditions
Nguendon Kenhagho, H., Shevchik, S., Saeidi, F., Faivre, N., Meylan, B., Rauter, G., … Zam, A. (2019). Characterization of ablated bone and muscle for long-pulsed laser ablation in dry and wet conditions. Materials, 12(8), 1338 (16 pp.). https://doi.org/10.3390/ma12081338
3D reconstruction of cracks propagation in mechanical workpieces analyzing non-stationary acoustic mixtures
Shevchik, S. A., Meylan, B., Violakis, G., & Wasmer, K. (2019). 3D reconstruction of cracks propagation in mechanical workpieces analyzing non-stationary acoustic mixtures. Mechanical Systems and Signal Processing, 119, 55-64. https://doi.org/10.1016/j.ymssp.2018.09.022
Deep learning for<em> in situ </em>and real-time quality monitoring in additive manufacturing using acoustic emission
Shevchik, S. A., Masinelli, G., Kenel, C., Leinenbach, C., & Wasmer, K. (2019). Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Transactions on Industrial Informatics, 15(9), 5194-5203. https://doi.org/10.1109/TII.2019.2910524
Laser welding quality monitoring via graph support vector machine with data adaptive kernel
Shevchik, S. A., Le-Quang, T., Farahani, F. V., Faivre, N., Meylan, B., Zanoli, S., & Wasmer, K. (2019). Laser welding quality monitoring via graph support vector machine with data adaptive kernel. IEEE Access, 7, 93108-93122. https://doi.org/10.1109/ACCESS.2019.2927661
Piezo acoustic versus opto-acoustic sensors in laser processing
Wasmer, K., Le-Quang, T., Shevchik, S. A., & Violakis, G. (2019). Piezo acoustic versus opto-acoustic sensors in laser processing. In NDT.net (p. (8 pp.).
Why is in situ quality control of laser keyhole welding a real challenge?
Le-Quang, T., Shevchik, S. A., Meylan, B., Vakili-Farahani, F., Olbinado, M. P., Rack, A., & Wasmer, K. (2018). Why is in situ quality control of laser keyhole welding a real challenge? In M. Schmidt, F. Vollertsen, & G. Dearden (Eds.), Procedia CIRP: Vol. 74. 10th CIRP conference on photonic technologies [LANE 2018] (pp. 649-653). https://doi.org/10.1016/j.procir.2018.08.055
Acoustic Emission for <i>in situ</i> monitoring of laser processing
Shevchik, S., Le, Q. T., Meylan, B., & Wasmer, K. (2018). Acoustic Emission for in situ monitoring of laser processing. In Conference proceedings Ewgae 2018 (p. (9 pp.). CETIM.
Acoustic emission for <i>in situ</i> monitoring of solid materials pre-weakening by electric discharge: a machine learning approach
Shevchik, S. A., Meylan, B., Mosaddeghi, A., & Wasmer, K. (2018). Acoustic emission for in situ monitoring of solid materials pre-weakening by electric discharge: a machine learning approach. IEEE Access, 6, 40313-40324. https://doi.org/10.1109/ACCESS.2018.2853666
AM/LW process monitoring combining high-speed X-ray imaging, acoustic & optical sensors and artificial intelligence
Wasmer, K., Le, T. Q., Meylan, B., Vakili-Farahani, F., Leinenbach, C., Olbinado, M. P., … Shevchik, S. A. (2018). AM/LW process monitoring combining high-speed X-ray imaging, acoustic & optical sensors and artificial intelligence. Presented at the ESRF user meeting 2018. Grenoble, France.
Laser processing quality monitoring by combining acoustic emission and machine learning: a high-speed X-ray imaging approach
Wasmer, K., Le-Quang, T., Meylan, B., Vakili-Farahani, F., Olbinado, M. P., Rack, A., & Shevchik, S. A. (2018). Laser processing quality monitoring by combining acoustic emission and machine learning: a high-speed X-ray imaging approach. In M. Schmidt, F. Vollertsen, & G. Dearden (Eds.), Procedia CIRP: Vol. 74. 10th CIRP conference on photonic technologies [LANE 2018] (pp. 654-658). https://doi.org/10.1016/j.procir.2018.08.054
When AE (acoustic emission) meets AI (artificial intelligence) II
Wasmer, K., Saeidi, F., Meylan, B., Le, Q. T., & Shevchik, S. A. (2018). When AE (acoustic emission) meets AI (artificial intelligence) II. In Conference proceedings Ewgae 2018 (p. (12 pp.). CETIM.
Characterization of ablated porcine bone and muscle using laser-induced acoustic wave method for tissue differentiation
Nguendon, H. K., Faivre, N., Meylan, B., Shevchik, S., Rauter, G., Guzman, R., … Zam, A. (2017). Characterization of ablated porcine bone and muscle using laser-induced acoustic wave method for tissue differentiation. Proceedings of SPIE: Vol. 10417. (p. 104170N (10 pp.). Presented at the European conference on biomedical optics, ECBO 2017. https://doi.org/10.1117/12.2286121