Active Filters

  • (-) Empa Authors = Shevchik, Sergey
  • (-) Keywords ≠ artificial intelligence
  • (-) Journal ≠ 10th CIRP conference on photonic technologies [LANE 2018]
Search Results 1 - 20 of 33
Select Page
Monitoring of Laser Powder Bed Fusion process by bridging dissimilar process maps using deep learning-based domain adaptation on acoustic emissions
Pandiyan, V., Wróbel, R., Richter, R. A., Leparoux, M., Leinenbach, C., & Shevchik, S. (2024). Monitoring of Laser Powder Bed Fusion process by bridging dissimilar process maps using deep learning-based domain adaptation on acoustic emissions. Additive Manufacturing, 80, 103974 (13 pp.). https://doi.org/10.1016/j.addma.2024.103974
Optimizing in-situ monitoring for laser powder bed fusion process: deciphering acoustic emission and sensor sensitivity with explainable machine learning
Pandiyan, V., Wróbel, R., Leinenbach, C., & Shevchik, S. (2023). Optimizing in-situ monitoring for laser powder bed fusion process: deciphering acoustic emission and sensor sensitivity with explainable machine learning. Journal of Materials Processing Technology, 321, 118144 (17 pp.). https://doi.org/10.1016/j.jmatprotec.2023.118144
Self-Supervised Bayesian representation learning of acoustic emissions from laser powder bed Fusion process for in-situ monitoring
Pandiyan, V., Wróbel, R., Richter, R. A., Leparoux, M., Leinenbach, C., & Shevchik, S. (2023). Self-Supervised Bayesian representation learning of acoustic emissions from laser powder bed Fusion process for in-situ monitoring. Materials and Design, 235, 112458 (15 pp.). https://doi.org/10.1016/j.matdes.2023.112458
Smart closed-loop control of laser welding using reinforcement learning
Le Quang, T., Meylan, B., Masinelli, G., Saeidi, F., Shevchik, S. A., Farahani, F. V., & Wasmer, K. (2022). Smart closed-loop control of laser welding using reinforcement learning. In M. Schmidt, F. Vollertsen, & B. M. Colosimo (Eds.), Procedia CIRP: Vol. 111. 12th CIRP conference on photonic technologies [LANE 2022] (pp. 479-483). https://doi.org/10.1016/j.procir.2022.08.074
Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process
Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., & Wasmer, K. (2022). Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process. Journal of Materials Processing Technology, 303, 117531 (14 pp.). https://doi.org/10.1016/j.jmatprotec.2022.117531
In situ quality monitoring in direct energy deposition process using co-axial process zone imaging and deep contrastive learning
Pandiyan, V., Cui, D., Le-Quang, T., Deshpande, P., Wasmer, K., & Shevchik, S. (2022). In situ quality monitoring in direct energy deposition process using co-axial process zone imaging and deep contrastive learning. Journal of Manufacturing Processes, 81, 1064-1075. https://doi.org/10.1016/j.jmapro.2022.07.033
Monitoring of direct energy deposition process using manifold learning and co-axial melt pool imaging
Pandiyan, V., Cui, D., Parrilli, A., Deshpande, P., Masinelli, G., Shevchik, S., & Wasmer, K. (2022). Monitoring of direct energy deposition process using manifold learning and co-axial melt pool imaging. Manufacturing Letters, 33(Suppl.), 776-785. https://doi.org/10.1016/j.mfglet.2022.07.096
Acoustic emission and machine learning for in situ monitoring of a gold-copper ore weakening by electric pulse
Meylan, B., Shevchik, S. A., Parvaz, D., Mosaddeghi, A., Simov, V., & Wasmer, K. (2021). Acoustic emission and machine learning for in situ monitoring of a gold-copper ore weakening by electric pulse. Journal of Cleaner Production, 280, 124348 (12 pp.). https://doi.org/10.1016/j.jclepro.2020.124348
Semi-supervised monitoring of laser powder bed fusion process based on acoustic emissions
Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., & Wasmer, K. (2021). Semi-supervised monitoring of laser powder bed fusion process based on acoustic emissions. Virtual and Physical Prototyping, 16(4), 481-497. https://doi.org/10.1080/17452759.2021.1966166
Machine learning monitoring for laser osteotomy
Shevchik, S., Nguendon Kenhagho, H., Le-Quang, T., Faivre, N., Meylan, B., Guzman, R., … Wasmer, K. (2021). Machine learning monitoring for laser osteotomy. Journal of Biophotonics, 14(4), e202000352 (11 pp.). https://doi.org/10.1002/jbio.202000352
Monitoring of friction-related failures using diffusion maps of acoustic time series
Shevchik, S. A., Zanoli, S., Saeidi, F., Meylan, B., Flück, G., & Wasmer, K. (2021). Monitoring of friction-related failures using diffusion maps of acoustic time series. Mechanical Systems and Signal Processing, 148, 107172 (14 pp.). https://doi.org/10.1016/j.ymssp.2020.107172
Adaptive laser welding control: a reinforcement learning approach
Masinelli, G., Le-Quang, T., Zanoli, S., Wasmer, K., & Shevchik, S. A. (2020). Adaptive laser welding control: a reinforcement learning approach. IEEE Access, 8, 103803-103814. https://doi.org/10.1109/ACCESS.2020.2998052
Re-solidification dynamics and microstructural analysis of laser welded aluminium
Meylan, B., Le-Quang, T., Olbinado, M. P., Rack, A., Shevchik, S. A., & Wasmer, K. (2020). Re-solidification dynamics and microstructural analysis of laser welded aluminium. International Journal of Materials Research, 111(1), 17-22. https://doi.org/10.3139/146.111838
Analysis of time, frequency and time-frequency domain features from acoustic emissions during laser powder-bed fusion process
Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Logé, R., & Wasmer, K. (2020). Analysis of time, frequency and time-frequency domain features from acoustic emissions during laser powder-bed fusion process. In M. Schmidt, F. Vollertsen, & E. Govekar (Eds.), Procedia CIRP: Vol. 94. 11th CIRP conference on photonic technologies [LANE 2020] (pp. 392-397). https://doi.org/10.1016/j.procir.2020.09.152
Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: a review
Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: a review. Journal of Manufacturing Processes, 57, 114-135. https://doi.org/10.1016/j.jmapro.2020.06.013
Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance
Shevchik, S., Le-Quang, T., Meylan, B., Vakili Farahani, F., Olbinado, M. P., Rack, A., … Wasmer, K. (2020). Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance. Scientific Reports, 10, 3389 (12 pp.). https://doi.org/10.1038/s41598-020-60294-x
Sensitivity analysis of acoustic emission detection using fiber bragg gratings with different optical fiber diameters
Violakis, G., Le-Quang, T., Shevchik, S. A., & Wasmer, K. (2020). Sensitivity analysis of acoustic emission detection using fiber bragg gratings with different optical fiber diameters. Sensors, 20(22), 6511 (11 pp.). https://doi.org/10.3390/s20226511
Characterization of ablated bone and muscle for long-pulsed laser ablation in dry and wet conditions
Nguendon Kenhagho, H., Shevchik, S., Saeidi, F., Faivre, N., Meylan, B., Rauter, G., … Zam, A. (2019). Characterization of ablated bone and muscle for long-pulsed laser ablation in dry and wet conditions. Materials, 12(8), 1338 (16 pp.). https://doi.org/10.3390/ma12081338
3D reconstruction of cracks propagation in mechanical workpieces analyzing non-stationary acoustic mixtures
Shevchik, S. A., Meylan, B., Violakis, G., & Wasmer, K. (2019). 3D reconstruction of cracks propagation in mechanical workpieces analyzing non-stationary acoustic mixtures. Mechanical Systems and Signal Processing, 119, 55-64. https://doi.org/10.1016/j.ymssp.2018.09.022
Deep learning for<em> in situ </em>and real-time quality monitoring in additive manufacturing using acoustic emission
Shevchik, S. A., Masinelli, G., Kenel, C., Leinenbach, C., & Wasmer, K. (2019). Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Transactions on Industrial Informatics, 15(9), 5194-5203. https://doi.org/10.1109/TII.2019.2910524