Active Filters

  • (-) Empa Authors = Tingaut, Philippe
Search Results 1 - 20 of 41
Select Page
Improved mechanical properties of bitumen modified with acetylated cellulose fibers
Desseaux, S., dos Santos, S., Geiger, T., Tingaut, P., Zimmermann, T., Partl, M. N., & Poulikakos, L. D. (2018). Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Composites Part B: Engineering, 140, 139-144. https://doi.org/10.1016/j.compositesb.2017.12.010
Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration
Sehaqui, H., Kulasinski, K., Pfenninger, N., Zimmermann, T., & Tingaut, P. (2017). Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration. Biomacromolecules, 18(1), 242-248. https://doi.org/10.1021/acs.biomac.6b01548
Cellulose nanocrystal inks for 3D printing of textured cellular architectures
Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M. K., Gladman, A. S., Neels, A., … Studart, A. R. (2017). Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials, 27(12), 1604619 (10 pp.). https://doi.org/10.1002/adfm.201604619
Drying and pyrolysis of cellulose nanofibers from wood, bacteria, and algae for char application in oil absorption and dye adsorption
Štefelová, J., Slovák, V., Siqueira, G., Olsson, R. T., Tingaut, P., Zimmermann, T., & Sehaqui, H. (2017). Drying and pyrolysis of cellulose nanofibers from wood, bacteria, and algae for char application in oil absorption and dye adsorption. ACS Sustainable Chemistry and Engineering, 5(3), 2679-2692. https://doi.org/10.1021/acssuschemeng.6b03027
Fibrillated cellulose in heterophase polymerization of nanoscale poly(methyl methacrylate) spheres
Grüneberger, F., Huch, A., Geiger, T., Zimmermann, T., & Tingaut, P. (2016). Fibrillated cellulose in heterophase polymerization of nanoscale poly(methyl methacrylate) spheres. Colloid and Polymer Science, 294(9), 1393-1403. https://doi.org/10.1007/s00396-016-3899-2
Structure of cellulose -silica hybrid aerogel at sub-micron scale, studied by synchrotron X-ray tomographic microscopy
Sedighi Gilani, M., Boone, M. N., Fife, J. L., Zhao, S., Koebel, M. M., Zimmermann, T., & Tingaut, P. (2016). Structure of cellulose -silica hybrid aerogel at sub-micron scale, studied by synchrotron X-ray tomographic microscopy. Composites Science and Technology, 124, 71-80. https://doi.org/10.1016/j.compscitech.2016.01.013
Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties
Sehaqui, H., Mautner, A., Perez de Larray, U., Pfenninger, N., Tingaut, P., & Zimmermann, T. (2016). Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydrate Polymers, 135, 334-340. https://doi.org/10.1016/j.carbpol.2015.08.091
Synthesis of new bis(acyl)phosphane oxide photoinitiators for the surface functionalization of cellulose nanocrystals
Wang, J., Siqueira, G., Müller, G., Rentsch, D., Huch, A., Tingaut, P., … Grützmacher, H. (2016). Synthesis of new bis(acyl)phosphane oxide photoinitiators for the surface functionalization of cellulose nanocrystals. Chemical Communications, 52(13), 2823-2826. https://doi.org/10.1039/c5cc09760f
Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media
Zoppe, J. O., Xu, X., Känel, C., Orsolini, P., Siqueira, G., Tingaut, P., … Klok, H. A. (2016). Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media. Biomacromolecules, 17(4), 1404-1413. https://doi.org/10.1021/acs.biomac.6b00011
Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels
Mueller, S., Sapkota, J., Nicharat, A., Zimmermann, T., Tingaut, P., Weder, C., & Foster, E. J. (2015). Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. Journal of Applied Polymer Science, 132(13), 41740 (13 pp.). https://doi.org/10.1002/app.41740
Characterization of pores in Ddense nanopapers and nanofibrillated cellulose membranes: a critical assessment of established methods
Orsolini, P., Michen, B., Huch, A., Tingaut, P., Caseri, W. R., & Zimmermann, T. (2015). Characterization of pores in Ddense nanopapers and nanofibrillated cellulose membranes: a critical assessment of established methods. ACS Applied Materials and Interfaces, 7(46), 25884-25897. https://doi.org/10.1021/acsami.5b08308
Fast and reversible direct CO<SUB>2</SUB> capture from air onto all-polymer nanofibrillated cellulose—polyethylenimine foams
Sehaqui, H., Gálvez, M. E., Becatinni, V., Ng, Y. cheng, Steinfeld, A., Zimmermann, T., & Tingaut, P. (2015). Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose—polyethylenimine foams. Environmental Science and Technology, 49(5), 3167-3174. https://doi.org/10.1021/es504396v
Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(ıı) and a positively charged dye
Sehaqui, H., Perez de Larraya, U., Tingaut, P., & Zimmermann, T. (2015). Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(ıı) and a positively charged dye. Soft Matter, 11(26), 5294-5300. https://doi.org/10.1039/C5SM00566C
TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules
Weishaupt, R., Siqueira, G., Schubert, M., Tingaut, P., Maniura-Weber, K., Zimmermann, T., … Ihssen, J. (2015). TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromolecules, 16(11), 3640-3650. https://doi.org/10.1021/acs.biomac.5b01100
Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites
Wong, J. C. H., Kaymak, H., Tingaut, P., Brunner, S., & Koebel, M. M. (2015). Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous and Mesoporous Materials, 217, 150-158. https://doi.org/10.1016/j.micromeso.2015.06.025
Controlled silylation of nanofibrillated cellulose in water: reinforcement of a model polydimethylsiloxane network
Zhang, Z., Tingaut, P., Rentsch, D., Zimmermann, T., & Sèbe, G. (2015). Controlled silylation of nanofibrillated cellulose in water: reinforcement of a model polydimethylsiloxane network. ChemSusChem, 8(16), 2681-2690. https://doi.org/10.1002/cssc.201500525
Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization
Zhao, S., Zhang, Z., Sèbe, G., Wu, R., Rivera Virtudazo, R. V., Tingaut, P., & Koebel, M. M. (2015). Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Advanced Functional Materials, 25(15), 2326-2334. https://doi.org/10.1002/adfm.201404368
Strong, thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin
Zhao, S., Malfait, W. J., Demilecamps, A., Zhang, Y., Brunner, S., Huber, L., … Koebel, M. M. (2015). Strong, thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin. Angewandte Chemie International Edition, 54(48), 14282-14286. https://doi.org/10.1002/anie.201507328
Functional materials from cellulose nanofibers
Zimmermann, T., Sehaqui, H., & Tingaut, P. (2015). Functional materials from cellulose nanofibers. Chimia, 69(4), 232. https://doi.org/10.2533/chimia.2015.232
Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose
Bandera, D., Sapkota, J., Josset, S., Weder, C., Tingaut, P., Gao, X., … Zimmermann, T. (2014). Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose. Reactive and Functional Polymers, 85, 134-141. https://doi.org/10.1016/j.reactfunctpolym.2014.09.009