Active Filters

  • (-) Empa Authors = Tiwari, Ayodhya N.
Search Results 1 - 20 of 225

Pages

  • RSS Feed
Select Page
Unveiling the GeI<sub>2</sub>-assisted oriented growth of perovskite crystallite for high-performance flexible Sn perovskite solar cells
Lai, H., Olthof, S., Ren, S., Kothandaraman, R. K., Diethelm, M., Jeangros, Q., … Fu, F. (2025). Unveiling the GeI2-assisted oriented growth of perovskite crystallite for high-performance flexible Sn perovskite solar cells. Energy and Environmental Materials, 8(1), e12791 (9 pp.). https://doi.org/10.1002/eem2.12791
Efficient blade-coated wide-bandgap perovskite solar cells via interface engineering
Pious, J. K., Rohrbeck, P. N., Widmer, R., Oechsle, A. H., Shivarudraiah, S. B., Kothandaraman, R. K., … Fu, F. (2025). Efficient blade-coated wide-bandgap perovskite solar cells via interface engineering. ACS Applied Materials and Interfaces, 17(16), 24040-24047. https://doi.org/10.1021/acsami.5c03709
Unveiling the role of Cl incorporation enables scalable MA-free triple-halide wide-bandgap perovskites for slot-die-coated photovoltaic modules
Siegrist, S., Quintana Ceres, P., Marrugat Arnal, V., Kothandaraman, R. K., Kurisinkal Pious, J., Lai, H., … Fu, F. (2025). Unveiling the role of Cl incorporation enables scalable MA-free triple-halide wide-bandgap perovskites for slot-die-coated photovoltaic modules. Solar RRL, 9(3), 2400750 (8 pp.). https://doi.org/10.1002/solr.202400750
A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems
Artuk, K., Turkay, D., Mensi, M. D., Steele, J. A., Jacobs, D. A., Othman, M., … Wolff, C. M. (2024). A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems. Advanced Materials, 36(21), 2311745 (10 pp.). https://doi.org/10.1002/adma.202311745
In situ buried interface engineering towards printable Pb-Sn perovskite solar cells
K. Pious, J., Lai, H., Hu, J., Luo, D., Gilshtein, E., Siegrist, S., … Fu, F. (2024). In situ buried interface engineering towards printable Pb-Sn perovskite solar cells. ACS Applied Materials and Interfaces, 16(30), 39399-39407. https://doi.org/10.1021/acsami.4c07083
Sputtered NiO interlayer for improved self-assembled monolayer coverage and pin-hole free perovskite coating for scalable near-infrared-transparent perovskite and 4-terminal all-thin-film tandem modules
Kothandaraman, R. K., Siegrist, S., Dussouillez, M., Krause, M., Lai, H., Pious, J. K., … Fu, F. (2024). Sputtered NiO interlayer for improved self-assembled monolayer coverage and pin-hole free perovskite coating for scalable near-infrared-transparent perovskite and 4-terminal all-thin-film tandem modules. Solar RRL, 8(21), 2400176 (12 pp.). https://doi.org/10.1002/solr.202400176
Precise alkali supply during and after growth for high-performance low bandgap (Ag,Cu)InSe<sub>2</sub> solar cells
Krause, M., Moser, S., Mitmit, C., Nishiwaki, S., Tiwari, A. N., & Carron, R. (2024). Precise alkali supply during and after growth for high-performance low bandgap (Ag,Cu)InSe2 solar cells. Solar RRL, 8(10), 2400077 (11 pp.). https://doi.org/10.1002/solr.202400077
Stabilizing solution–substrate interaction of perovskite ink on PEDOT:PSS for scalable blade coated narrow bandgap perovskite solar modules by gas quenching
Siegrist, S., Kurisinkal Pious, J., Lai, H., Kothandaraman, R. K., Luo, J., Vlnieska, V., … Fu, F. (2024). Stabilizing solution–substrate interaction of perovskite ink on PEDOT:PSS for scalable blade coated narrow bandgap perovskite solar modules by gas quenching. Solar RRL, 8(15), 2400447 (10 pp.). https://doi.org/10.1002/solr.202400447
Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests
Suo, J., Yang, B., Mosconi, E., Bogachuk, D., Doherty, T. A. S., Frohna, K., … Hagfeldt, A. (2024). Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nature Energy, 9, 172-183. https://doi.org/10.1038/s41560-023-01421-6
Silver-alloyed low-bandgap CuInSe<sub>2</sub> solar cells for tandem applications
Krause, M., Yang, S. C., Moser, S., Nishiwaki, S., Tiwari, A. N., & Carron, R. (2023). Silver-alloyed low-bandgap CuInSe2 solar cells for tandem applications. Solar RRL, 7(9), 2201122 (10 pp.). https://doi.org/10.1002/solr.202201122
Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells
Kurisinkal Pious, J., Zwirner, Y., Lai, H., Olthof, S., Jeangros, Q., Gilshtein, E., … Fu, F. (2023). Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells. ACS Applied Materials and Interfaces, 15(7), 10151-10157. https://doi.org/10.1021/acsami.2c19124
29.9%-efficient, commercially viable perovskite/CuInSe<sub>2</sub> thin-film tandem solar cells
Liang, H., Feng, J., Rodríguez-Gallegos, C. D., Krause, M., Wang, X., Alvianto, E., … Hou, Y. (2023). 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells. Joule, 7(12), 2859-2872. https://doi.org/10.1016/j.joule.2023.10.007
Controlled li alloying by postsynthesis electrochemical treatment of Cu<sub>2</sub>ZnSn(S, Se)<sub>4</sub> absorbers for solar cells
Moser, S., Aribia, A., Scaffidi, R., Gilshtein, E., Brammertz, G., Vermang, B., … Carron, R. (2023). Controlled li alloying by postsynthesis electrochemical treatment of Cu2ZnSn(S, Se)4 absorbers for solar cells. ACS Applied Energy Materials, 6(24), 12515-12525. https://doi.org/10.1021/acsaem.3c02483
Interplay between Li and Na amid co-doped solution-processed Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> absorbers for solar cells
Moser, S., Tiwari, A. N., & Carron, R. (2023). Interplay between Li and Na amid co-doped solution-processed Cu2ZnSn(S,Se)4 absorbers for solar cells. Solar Energy Materials and Solar Cells, 250, 112094 (9 pp.). https://doi.org/10.1016/j.solmat.2022.112094
Understanding coating thickness and uniformity of blade-coated SnO<sub>2</sub> electron transport layer for scalable perovskite solar cells
Siegrist, S., Nandi, P., Kothandaraman, R. K., Abdessalem, A., Tiwari, A. N., & Fu, F. (2023). Understanding coating thickness and uniformity of blade-coated SnO2 electron transport layer for scalable perovskite solar cells. Solar RRL, 7(14), 2300273 (7 pp.). https://doi.org/10.1002/solr.202300273
Accounting for fabrication variability in transparent perovskite solar cells for four-terminal tandem applications
Tan, H. Q., Liang, H., Krause, M., Zhao, X., Kothandaraman, R., Carron, R., … Xue, H. (2023). Accounting for fabrication variability in transparent perovskite solar cells for four-terminal tandem applications. Solar RRL, 7(18), 2300339 (13 pp.). https://doi.org/10.1002/solr.202300339
Efficiency boost of bifacial Cu(In,Ga)Se<sub>2</sub> thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process
Yang, S. C., Lin, T. Y., Ochoa, M., Lai, H., Kothandaraman, R., Fu, F., … Carron, R. (2023). Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process. Nature Energy, 8, 40-51. https://doi.org/10.1038/s41560-022-01157-9
Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5 – 4.7 V
Aribia, A., Sastre, J., Chen, X., Futscher, M. H., Rumpel, M., Priebe, A., … Romanyuk, Y. E. (2022). Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5 – 4.7 V. Advanced Energy Materials, 12(40), 2201750 (8 pp.). https://doi.org/10.1002/aenm.202201750
Investigation and mitigation of sputter damage on Co-evaporated Cu(In,Ga)Se<sub>2</sub> absorbers for photovoltaic applications
Hertwig, R., Nishiwaki, S., Tiwari, A. N., & Carron, R. (2022). Investigation and mitigation of sputter damage on Co-evaporated Cu(In,Ga)Se2 absorbers for photovoltaic applications. Solar RRL, 6(9), 2200268 (9 pp.). https://doi.org/10.1002/solr.202200268
Laser patterned flexible 4T perovskite‐Cu(In,Ga)Se<sub>2</sub> tandem mini‐module with over 18% efficiency
Kothandaraman, R. K., Lai, H., Aribia, A., Nishiwaki, S., Siegrist, S., Krause, M., … Fu, F. (2022). Laser patterned flexible 4T perovskite‐Cu(In,Ga)Se2 tandem mini‐module with over 18% efficiency. Solar RRL, 6(9), 2200392 (11 pp.). https://doi.org/10.1002/solr.202200392
 

Pages