Active Filters

  • (-) Empa Authors = Trottmann, Matthias
Search Results 1 - 20 of 48
Select Page
3D chemical mapping of thin films by means of X-ray laser microanalysis
Bleiner, D., Trottmann, M., Müller, R., Rush, L., Kuznezov, I., Cabas-Vidani, A., … Rocca, J. J. (2020). 3D chemical mapping of thin films by means of X-ray laser microanalysis. In M. Kozlová & J. Nejdl (Eds.), Springer proceedings in physics: Vol. 241. X-ray lasers 2018. Proceedings of the 16th international conference on X-ray lasers (pp. 3-10). https://doi.org/10.1007/978-3-030-35453-4_1
XUV laser mass spectrometry for nano-scale 3D elemental profiling of functional thin films
Bleiner, D., Trottmann, M., Cabas-Vidani, A., Wichser, A., Romanyuk, Y. E., & Tiwari, A. N. (2020). XUV laser mass spectrometry for nano-scale 3D elemental profiling of functional thin films. Applied Physics A: Materials Science and Processing, 126, 230 (10 pp.). https://doi.org/10.1007/s00339-020-3381-3
Hydrogen in methanol catalysts by neutron imaging
Terreni, J., Billeter, E., Sambalova, O., Liu, X., Trottmann, M., Sterzi, A., … Borgschulte, A. (2020). Hydrogen in methanol catalysts by neutron imaging. Physical Chemistry Chemical Physics, 22(40), 22979-22988. https://doi.org/10.1039/d0cp03414b
Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm<sup>2</sup> LaTiO<sub>2</sub>N photoanodes
Dilger, S., Trottmann, M., & Pokrant, S. (2019). Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm2 LaTiO2N photoanodes. ChemSusChem, 12(9), 1931-1938. https://doi.org/10.1002/cssc.201802645
Sorption-enhanced methanol synthesis
Terreni, J., Trottmann, M., Franken, T., Heel, A., & Borgschulte, A. (2019). Sorption-enhanced methanol synthesis. Energy Technology, 7(4), 1801093 (9 pp.). https://doi.org/10.1002/ente.201801093
Spark-induced breakdown spectroscopy of methane/air and hydrogen-enriched methane/air mixtures at engine relevant conditions
Kammermann, T., Kreutner, W., Trottmann, M., Merotto, L., Soltic, P., & Bleiner, D. (2018). Spark-induced breakdown spectroscopy of methane/air and hydrogen-enriched methane/air mixtures at engine relevant conditions. Spectrochimica Acta B: Atomic Spectroscopy, 148, 152-164. https://doi.org/10.1016/j.sab.2018.06.013
Depth-profiling microanalysis of CoNCN water-oxidation catalyst using a <i>λ</i> = 46.9 nm plasma laser for nano-ionization mass spectrometry
Müller, R., Kuznetsov, I., Arbelo, Y., Trottmann, M., Menoni, C. S., Rocca, J. J., … Bleiner, D. (2018). Depth-profiling microanalysis of CoNCN water-oxidation catalyst using a λ = 46.9 nm plasma laser for nano-ionization mass spectrometry. Analytical Chemistry, 90(15), 9234-9240. https://doi.org/10.1021/acs.analchem.8b01740
Observing chemical reactions by time-resolved high-resolution neutron imaging
Terreni, J., Trottmann, M., Delmelle, R., Heel, A., Trtik, P., Lehmann, E. H., & Borgschulte, A. (2018). Observing chemical reactions by time-resolved high-resolution neutron imaging. Journal of Physical Chemistry C, 122(41), 23574-23581. https://doi.org/10.1021/acs.jpcc.8b07321
Space resolved detection of Iodine (I) & Potassium (K) in treated wooden samples
Trottmann, M., Wichser, A., Arnold, M., & Bleiner, D. (2018). Space resolved detection of Iodine (I) & Potassium (K) in treated wooden samples. Presented at the SCS Fall Meeting 2018. Lausanne.
Thermoelectric properties of [Ca<sub>2</sub>CoO<sub>3-δ</sub>][CoO<sub>2</sub>]<sub>1,62</sub> as a function of Co/Ca defects and Co<sub>3</sub>O<sub>4</sub> inclusions
Büttner, G., Populoh, S., Xie, W., Trottmann, M., Hertrampf, J., Döbeli, M., … Weidenkaff, A. (2017). Thermoelectric properties of [Ca2CoO3-δ][CoO2]1,62 as a function of Co/Ca defects and Co3O4 inclusions. Journal of Applied Physics, 121(21), 215101 (8 pp.). https://doi.org/10.1063/1.4984067
Size effects of cocatalysts in photoelectrochemical and photocatalytic water splitting
Pokrant, S., Dilger, S., Landsmann, S., & Trottmann, M. (2017). Size effects of cocatalysts in photoelectrochemical and photocatalytic water splitting. Materials Today Energy, 5, 158-163. https://doi.org/10.1016/j.mtener.2017.06.005
Low-temperature reducibility of M&lt;sub&gt;x&lt;/sub&gt;Ce&lt;sub&gt;1-x&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; (M = Zr, Hf) under hydrogen atmosphere
Bonk, A., Remhof, A., Maier, A. C., Trottmann, M., Schlupp, M. V. F., Battaglia, C., & Vogt, U. F. (2016). Low-temperature reducibility of MxCe1-xO2 (M = Zr, Hf) under hydrogen atmosphere. Journal of Physical Chemistry C, 120(1), 118-125. https://doi.org/10.1021/acs.jpcc.5b10796
Carbon containing conductive networks in composite particle-based photoanodes for solar water splitting
Dilger, S., Landsmann, S., Trottmann, M., & Pokrant, S. (2016). Carbon containing conductive networks in composite particle-based photoanodes for solar water splitting. Journal of Materials Chemistry A, 4(43), 17087-17095. https://doi.org/10.1039/C6TA06360H
Controlled design of functional nano-coatings: reduction of loss mechanisms in photoelectrochemical water splitting
Landsmann, S., Surace, Y., Trottmann, M., Dilger, S., Weidenkaff, A., & Pokrant, S. (2016). Controlled design of functional nano-coatings: reduction of loss mechanisms in photoelectrochemical water splitting. ACS Applied Materials and Interfaces, 8(19), 12149-12157. https://doi.org/10.1021/acsami.6b01129
From occupied voids to nanoprecipitates: synthesis of skutterudite nanocomposites in situ
Eilertsen, J., Surace, Y., Balog, S., Sagarna, L., Rogl, G., Horky, J., … Weidenkaff, A. (2015). From occupied voids to nanoprecipitates: synthesis of skutterudite nanocomposites in situ. Zeitschrift für Anorganische und Allgemeine Chemie, 641(8-9), 1495-1502. https://doi.org/10.1002/zaac.201500137
Design guidelines for high-performance particle-based photoanodes for water splitting: lanthanum titanium oxynitride as a model
Landsmann, S., Maegli, A. E., Trottmann, M., Battaglia, C., Weidenkaff, A., & Pokrant, S. (2015). Design guidelines for high-performance particle-based photoanodes for water splitting: lanthanum titanium oxynitride as a model. ChemSusChem, 8(20), 3451-3458. https://doi.org/10.1002/cssc.201500830
The influence of boric acid on improved persistent luminescence and thermal oxidation resistance of SrAl<SUB>2</SUB>O<SUB>4</SUB>:Eu<SUP>2+</SUP>
Yoon, S., Bierwagen, J., Trottmann, M., Walfort, B., Gartmann, N., Weidenkaff, A., … Pokrant, S. (2015). The influence of boric acid on improved persistent luminescence and thermal oxidation resistance of SrAl2O4:Eu2+. Journal of Luminescence, 167, 126-131. https://doi.org/10.1016/j.jlumin.2015.06.021
Enhancement of photocatalytic water oxidation by the morphological control of LaTiO<sub>2</sub>N and cobalt oxide catalysts
Maegli, A. E., Pokrant, S., Hisatomi, T., Trottmann, M., Domen, K., & Weidenkaff, A. (2014). Enhancement of photocatalytic water oxidation by the morphological control of LaTiO2N and cobalt oxide catalysts. Journal of Physical Chemistry C, 118(30), 16344-16351. https://doi.org/10.1021/jp4084162
Thermoelectric study of crossroads material MnTe via sulfur doping
Xie, W., Populoh, S., Gałązka, K., Xiao, X., Sagarna, L., Liu, Y., … Weidenkaff, A. (2014). Thermoelectric study of crossroads material MnTe via sulfur doping. Journal of Applied Physics, 115(10), 103707 (7 pp.). https://doi.org/10.1063/1.4868584
Attrition-enhanced nanocomposite synthesis of indium-filled, iron-substituted skutterudite antimonides for improved performance thermoelectrics
Eilertsen, J., Trottmann, M., Populoh, S., Berthelot, R., Cooke, C. M., Cinibulk, M. K., … Subramanian, M. A. (2013). Attrition-enhanced nanocomposite synthesis of indium-filled, iron-substituted skutterudite antimonides for improved performance thermoelectrics. In G. S. Nolas, Y. Grin, D. Johnson, & A. Thompson (Eds.), Materials research society symposium proceedings: Vol. 1490. Symposium B – thermoelectric materials research and device development for power conversion and refrigeration (pp. 27-32). https://doi.org/10.1557/opl.2013.287