Active Filters

  • (-) Empa Authors = Trottmann, Matthias
  • (-) Keywords ≠ archaeology
Search Results 1 - 20 of 51
Select Page
Conductive n-type gallium nitride thin films prepared by sputter deposition
Loretz, P., Tschirky, T., Isa, F., Patscheider, J., Trottmann, M., Wichser, A., … Jaeger, D. (2022). Conductive n-type gallium nitride thin films prepared by sputter deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 40(4), 042703 (11 pp.). https://doi.org/10.1116/6.0001623
Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO<sub>2</sub> reduction
Senocrate, A., Bernasconi, F., Rentsch, D., Kraft, K., Trottmann, M., Wichser, A., … Battaglia, C. (2022). Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO2 reduction. ACS Applied Energy Materials, 5(11), 14504-14512. https://doi.org/10.1021/acsaem.2c03054
Dual spectrometer for simultaneous visible and exterme ultraviolet LIBS
Qu, D., Trottmann, M., Wyder, C., & Bleiner, D. (2021). Dual spectrometer for simultaneous visible and exterme ultraviolet LIBS. In D. Bleiner (Ed.), Proceedings of SPIE: Vol. 11886. International conference on X-ray lasers 2020 (p. 118860X (7 pp.). https://doi.org/10.1117/12.2594458
High-precision mapping of fluorine and lithium in energy materials by means of laser-induced XUV spectroscopy (LIXS)
Qu, D., Ohannessian, N., Wyder, C., Trottmann, M., Wichser, A., Lippert, T., & Bleiner, D. (2021). High-precision mapping of fluorine and lithium in energy materials by means of laser-induced XUV spectroscopy (LIXS). Spectrochimica Acta B: Atomic Spectroscopy, 181, 106214 (7 pp.). https://doi.org/10.1016/j.sab.2021.106214
3D chemical mapping of thin films by means of X-ray laser microanalysis
Bleiner, D., Trottmann, M., Müller, R., Rush, L., Kuznezov, I., Cabas-Vidani, A., … Rocca, J. J. (2020). 3D chemical mapping of thin films by means of X-ray laser microanalysis. In M. Kozlová & J. Nejdl (Eds.), Springer proceedings in physics: Vol. 241. X-ray lasers 2018. Proceedings of the 16th international conference on X-ray lasers (pp. 3-10). https://doi.org/10.1007/978-3-030-35453-4_1
XUV laser mass spectrometry for nano-scale 3D elemental profiling of functional thin films
Bleiner, D., Trottmann, M., Cabas-Vidani, A., Wichser, A., Romanyuk, Y. E., & Tiwari, A. N. (2020). XUV laser mass spectrometry for nano-scale 3D elemental profiling of functional thin films. Applied Physics A: Materials Science and Processing, 126, 230 (10 pp.). https://doi.org/10.1007/s00339-020-3381-3
Hydrogen in methanol catalysts by neutron imaging
Terreni, J., Billeter, E., Sambalova, O., Liu, X., Trottmann, M., Sterzi, A., … Borgschulte, A. (2020). Hydrogen in methanol catalysts by neutron imaging. Physical Chemistry Chemical Physics, 22(40), 22979-22988. https://doi.org/10.1039/d0cp03414b
Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm&lt;sup&gt;2&lt;/sup&gt; LaTiO&lt;sub&gt;2&lt;/sub&gt;N photoanodes
Dilger, S., Trottmann, M., & Pokrant, S. (2019). Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm2 LaTiO2N photoanodes. ChemSusChem, 12(9), 1931-1938. https://doi.org/10.1002/cssc.201802645
Sorption-enhanced methanol synthesis
Terreni, J., Trottmann, M., Franken, T., Heel, A., & Borgschulte, A. (2019). Sorption-enhanced methanol synthesis. Energy Technology, 7(4), 1801093 (9 pp.). https://doi.org/10.1002/ente.201801093
Spark-induced breakdown spectroscopy of methane/air and hydrogen-enriched methane/air mixtures at engine relevant conditions
Kammermann, T., Kreutner, W., Trottmann, M., Merotto, L., Soltic, P., & Bleiner, D. (2018). Spark-induced breakdown spectroscopy of methane/air and hydrogen-enriched methane/air mixtures at engine relevant conditions. Spectrochimica Acta B: Atomic Spectroscopy, 148, 152-164. https://doi.org/10.1016/j.sab.2018.06.013
Depth-profiling microanalysis of CoNCN water-oxidation catalyst using a <i>λ</i> = 46.9 nm plasma laser for nano-ionization mass spectrometry
Müller, R., Kuznetsov, I., Arbelo, Y., Trottmann, M., Menoni, C. S., Rocca, J. J., … Bleiner, D. (2018). Depth-profiling microanalysis of CoNCN water-oxidation catalyst using a λ = 46.9 nm plasma laser for nano-ionization mass spectrometry. Analytical Chemistry, 90(15), 9234-9240. https://doi.org/10.1021/acs.analchem.8b01740
Observing chemical reactions by time-resolved high-resolution neutron imaging
Terreni, J., Trottmann, M., Delmelle, R., Heel, A., Trtik, P., Lehmann, E. H., & Borgschulte, A. (2018). Observing chemical reactions by time-resolved high-resolution neutron imaging. Journal of Physical Chemistry C, 122(41), 23574-23581. https://doi.org/10.1021/acs.jpcc.8b07321
Space resolved detection of Iodine (I) & Potassium (K) in treated wooden samples
Trottmann, M., Wichser, A., Arnold, M., & Bleiner, D. (2018). Space resolved detection of Iodine (I) & Potassium (K) in treated wooden samples. Presented at the SCS Fall Meeting 2018. Lausanne.
Thermoelectric properties of [Ca<sub>2</sub>CoO<sub>3-δ</sub>][CoO<sub>2</sub>]<sub>1,62</sub> as a function of Co/Ca defects and Co<sub>3</sub>O<sub>4</sub> inclusions
Büttner, G., Populoh, S., Xie, W., Trottmann, M., Hertrampf, J., Döbeli, M., … Weidenkaff, A. (2017). Thermoelectric properties of [Ca2CoO3-δ][CoO2]1,62 as a function of Co/Ca defects and Co3O4 inclusions. Journal of Applied Physics, 121(21), 215101 (8 pp.). https://doi.org/10.1063/1.4984067
Size effects of cocatalysts in photoelectrochemical and photocatalytic water splitting
Pokrant, S., Dilger, S., Landsmann, S., & Trottmann, M. (2017). Size effects of cocatalysts in photoelectrochemical and photocatalytic water splitting. Materials Today Energy, 5, 158-163. https://doi.org/10.1016/j.mtener.2017.06.005
Low-temperature reducibility of M&lt;sub&gt;x&lt;/sub&gt;Ce&lt;sub&gt;1-x&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; (M = Zr, Hf) under hydrogen atmosphere
Bonk, A., Remhof, A., Maier, A. C., Trottmann, M., Schlupp, M. V. F., Battaglia, C., & Vogt, U. F. (2016). Low-temperature reducibility of MxCe1-xO2 (M = Zr, Hf) under hydrogen atmosphere. Journal of Physical Chemistry C, 120(1), 118-125. https://doi.org/10.1021/acs.jpcc.5b10796
Carbon containing conductive networks in composite particle-based photoanodes for solar water splitting
Dilger, S., Landsmann, S., Trottmann, M., & Pokrant, S. (2016). Carbon containing conductive networks in composite particle-based photoanodes for solar water splitting. Journal of Materials Chemistry A, 4(43), 17087-17095. https://doi.org/10.1039/C6TA06360H
Controlled design of functional nano-coatings: reduction of loss mechanisms in photoelectrochemical water splitting
Landsmann, S., Surace, Y., Trottmann, M., Dilger, S., Weidenkaff, A., & Pokrant, S. (2016). Controlled design of functional nano-coatings: reduction of loss mechanisms in photoelectrochemical water splitting. ACS Applied Materials and Interfaces, 8(19), 12149-12157. https://doi.org/10.1021/acsami.6b01129
From occupied voids to nanoprecipitates: synthesis of skutterudite nanocomposites in situ
Eilertsen, J., Surace, Y., Balog, S., Sagarna, L., Rogl, G., Horky, J., … Weidenkaff, A. (2015). From occupied voids to nanoprecipitates: synthesis of skutterudite nanocomposites in situ. Zeitschrift für Anorganische und Allgemeine Chemie, 641(8-9), 1495-1502. https://doi.org/10.1002/zaac.201500137
Design guidelines for high-performance particle-based photoanodes for water splitting: lanthanum titanium oxynitride as a model
Landsmann, S., Maegli, A. E., Trottmann, M., Battaglia, C., Weidenkaff, A., & Pokrant, S. (2015). Design guidelines for high-performance particle-based photoanodes for water splitting: lanthanum titanium oxynitride as a model. ChemSusChem, 8(20), 3451-3458. https://doi.org/10.1002/cssc.201500830