Active Filters

  • (-) Empa Authors = Walter, Marc
  • (-) Empa Authors ≠ Wang, Shutao
  • (-) Empa Authors ≠ Oszajca, Marek F.
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Challenges and benefits of post-lithium-ion batteries
Walter, M., Kovalenko, M. V., & Kravchyk, K. V. (2020). Challenges and benefits of post-lithium-ion batteries. New Journal of Chemistry, 44(5), 1677-1683. https://doi.org/10.1039/c9nj05682c
Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area
Dörner, L., Cancellieri, C., Rheingans, B., Walter, M., Kägi, R., Schmutz, P., … Jeurgens, L. P. H. (2019). Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Scientific Reports, 9, 11758 (15 pp.). https://doi.org/10.1038/s41598-019-48020-8
A high-voltage concept with sodium-ion conducting β-alumina for magnesium-sodium dual-ion batteries
Kravchyk, K. V., Walter, M., & Kovalenko, M. V. (2019). A high-voltage concept with sodium-ion conducting β-alumina for magnesium-sodium dual-ion batteries. Communications Chemistry, 2, 84 (6 pp.). https://doi.org/10.1038/s42004-019-0186-4
Oxidized Co–Sn nanoparticles as long-lasting anode materials for lithium-ion batteries
Walter, M., Doswald, S., Krumeich, F., He, M., Widmer, R., Stadie, N. P., & Kovalenko, M. V. (2018). Oxidized Co–Sn nanoparticles as long-lasting anode materials for lithium-ion batteries. Nanoscale, 10(8), 3777-3783. https://doi.org/10.1039/C7NR07309G
Polypyrenes as high-performance cathode materials for aluminum batteries
Walter, M., Kravchyk, K. V., Böfer, C., Widmer, R., & Kovalenko, M. V. (2018). Polypyrenes as high-performance cathode materials for aluminum batteries. Advanced Materials, 30(15), 1705644 (6 pp.). https://doi.org/10.1002/adma.201705644
From molecular germanates to microporous Ge@C <I>via</I> twin polymerization
Kitschke, P., Walter, M., Rüffer, T., Lang, H., Kovalenko, M. V., & Mehring, M. (2016). From molecular germanates to microporous Ge@C via twin polymerization. Dalton Transactions, 45(13), 5741-5751. https://doi.org/10.1039/C6DT00049E
Porous Ge@C materials <I>via</I> twin polymerization of germanium(ıı) salicyl alcoholates for Li-ion batteries
Kitschke, P., Walter, M., Rüffer, T., Seifert, A., Speck, F., Seyller, T., … Mehring, M. (2016). Porous Ge@C materials via twin polymerization of germanium(ıı) salicyl alcoholates for Li-ion batteries. Journal of Materials Chemistry A, 4(7), 2705-2719. https://doi.org/10.1039/C5TA09891B
Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries
Walter, M., Doswald, S., & Kovalenko, M. V. (2016). Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries. Journal of Materials Chemistry A, 4(18), 7053-7059. https://doi.org/10.1039/C5TA10568D
Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb
He, M., Walter, M., Kravchyk, K. V., Erni, R., Widmer, R., & Kovalenko, M. V. (2015). Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. Nanoscale, 7(2), 455-459. https://doi.org/10.1039/c4nr05604c
Efficient and inexpensive sodium–magnesium hybrid battery
Walter, M., Kravchyk, K. V., Ibáñez, M., & Kovalenko, M. V. (2015). Efficient and inexpensive sodium–magnesium hybrid battery. Chemistry of Materials, 27(21), 7452-7458. https://doi.org/10.1021/acs.chemmater.5b03531
Evaluation of metal phosphide nanocrystals as anode materials for Na-ion batteries
Walter, M., Bodnarchuk, M. I., Kravchyk, K. V., & Kovalenko, M. V. (2015). Evaluation of metal phosphide nanocrystals as anode materials for Na-ion batteries. Chimia, 69(12), 724-728. https://doi.org/10.2533/chimia.2015.724
Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries
Walter, M., Erni, R., & Kovalenko, M. V. (2015). Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Scientific Reports, 5, 8418 (7 pp.). https://doi.org/10.1038/srep08418
Pyrite (FeS<SUB>2</SUB>) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials
Walter, M., Zünd, T., & Kovalenko, M. V. (2015). Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale, 7(20), 9158-9163. https://doi.org/10.1039/c5nr00398a
Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk
He, M., Kravchyk, K., Walter, M., & Kovalenko, M. V. (2014). Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Letters, 14(3), 1255-1262. https://doi.org/10.1021/nl404165c
Unraveling the core–shell structure of ligand-capped Sn/SnO<I><SUB>x</SUB></I> nanoparticles by surface-enhanced nuclear magnetic resonance, Mössbauer, and X-ray absorption spectroscopies
Protesescu, L., Rossini, A. J., Kriegner, D., Valla, M., de Kergommeaux, A., Walter, M., … Kovalenko, M. V. (2014). Unraveling the core–shell structure of ligand-capped Sn/SnOx nanoparticles by surface-enhanced nuclear magnetic resonance, Mössbauer, and X-ray absorption spectroscopies. ACS Nano, 8(3), 2639-2648. https://doi.org/10.1021/nn406344n