Active Filters

  • (-) Empa Authors = Wheeler, Jeffrey M.
  • (-) Empa Authors ≠ Kuebler, Jakob J.
Search Results 1 - 20 of 55
Select Page
High temperature nanoindentation of Cu-TiN nanolaminates
Wheeler, J. M., Harvey, C., Li, N., Misra, A., Mara, N. A., Maeder, X., … Pathak, S. (2021). High temperature nanoindentation of Cu-TiN nanolaminates. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 804, 140522 (7 pp.). https://doi.org/10.1016/j.msea.2020.140522
Statistics of dislocation avalanches in FCC and BCC metals: dislocation mechanisms and mean swept distances across microsample sizes and temperatures
Alcalá, J., Očenášek, J., Varillas, J., A. El-Awady, J., Wheeler, J. M., & Michler, J. (2020). Statistics of dislocation avalanches in FCC and BCC metals: dislocation mechanisms and mean swept distances across microsample sizes and temperatures. Scientific Reports, 10, 19024 (14 pp.). https://doi.org/10.1038/s41598-020-75934-5
The effect of dislocation nature on the size effect in Indium Antimonide above and below the brittle-ductile transition
Wheeler, J. M., Thilly, L., Zou, Y., Morel, A., Raghavan, R., & Michler, J. (2020). The effect of dislocation nature on the size effect in Indium Antimonide above and below the brittle-ductile transition. MRS Advances, 5(33-34), 1811-1818. https://doi.org/10.1557/adv.2019.369
Determination of the true projected contact area by in situ indentation testing
Guillonneau, G., Wheeler, J. M., Wehrs, J., Philippe, L., Baral, P., Höppel, H. W., … Michler, J. (2019). Determination of the true projected contact area by in situ indentation testing. Journal of Materials Research, 34(16), 2859-2868. https://doi.org/10.1557/jmr.2019.236
Reversible, high temperature softening of plasma-nitrided hot-working steel studied using <I>in situ</I> micro-pillar compression
Best, J. P., Wehrs, J., Maeder, X., Zechner, J., Wheeler, J. M., Schär, T., … Michler, J. (2017). Reversible, high temperature softening of plasma-nitrided hot-working steel studied using in situ micro-pillar compression. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 680, 433-436. https://doi.org/10.1016/j.msea.2016.11.003
Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions
Xiao, Y., Wehrs, J., Ma, H., Al-Samman, T., Korte-Kerzel, S., Göken, M., … Wheeler, J. M. (2017). Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions. Scripta Materialia, 127, 191-194. https://doi.org/10.1016/j.scriptamat.2016.08.028
Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation
Best, J. P., Zechner, J., Wheeler, J. M., Schoeppner, R., Morstein, M., & Michler, J. (2016). Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation. Philosophical Magazine, 96(32-34), 3552-3569. https://doi.org/10.1080/14786435.2016.1223891
High-temperature in situ deformation of GaAs micro-pillars: lithography versus FIB machining
Chen, M., Wehrs, J., Michler, J., & Wheeler, J. M. (2016). High-temperature in situ deformation of GaAs micro-pillars: lithography versus FIB machining. JOM: Journal of the Minerals, Metals and Materials Society, 68(11), 2761-2767. https://doi.org/10.1007/s11837-016-2106-8
Local mechanical properties of the (β<SUB>0</SUB>+ω<SUB>0</SUB>) composite in multiphase titanium aluminides studied with nanoindentation at room and high temperatures
Kolb, M., Wheeler, J. M., Mathur, H. N., Neumeier, S., Korte-Kerzel, S., Pyczak, F., … Göken, M. (2016). Local mechanical properties of the (β00) composite in multiphase titanium aluminides studied with nanoindentation at room and high temperatures. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 665, 135-140. https://doi.org/10.1016/j.msea.2016.04.026
Plastic flow at the theoretical yield stress in ceramic films
Liu, S., Wheeler, J. M., Michler, J., Zeng, X. T., & Clegg, W. J. (2016). Plastic flow at the theoretical yield stress in ceramic films. Scripta Materialia, 117, 24-27. https://doi.org/10.1016/j.scriptamat.2016.02.008
Orientation-dependent mechanical behaviour of electrodeposited copper with nanoscale twins
Mieszala, M., Guillonneau, G., Hasegawa, M., Raghavan, R., Wheeler, J. M., Mischler, S., … Philippe, L. (2016). Orientation-dependent mechanical behaviour of electrodeposited copper with nanoscale twins. Nanoscale, 8(35), 15999-16004. https://doi.org/10.1039/C6NR05116B
Temperature-dependent size effects on the strength of Ta and W micropillars
Torrents Abad, O., Wheeler, J. M., Michler, J., Schneider, A. S., & Arzt, E. (2016). Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Materialia, 103, 483-494. https://doi.org/10.1016/j.actamat.2015.10.016
Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales
Wheeler, J. M., Raghavan, R., Wehrs, J., Zhang, Y., Erni, R., & Michler, J. (2016). Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales. Nano Letters, 16(1), 812-816. https://doi.org/10.1021/acs.nanolett.5b04989
The effect of size on the strength of FCC metals at elevated temperatures: annealed copper
Wheeler, J. M., Kirchlechner, C., Micha, J. S., Michler, J., & Kiener, D. (2016). The effect of size on the strength of FCC metals at elevated temperatures: annealed copper. Philosophical Magazine, 96(32-34), 3379-3395. https://doi.org/10.1080/14786435.2016.1224945
The plasticity of indium antimonide: insights from variable temperature, strain rate jump micro-compression testing
Wheeler, J. M., Thilly, L., Morel, A., Taylor, A. A., Montagne, A., Ghisleni, R., & Michler, J. (2016). The plasticity of indium antimonide: insights from variable temperature, strain rate jump micro-compression testing. Acta Materialia, 106, 283-289. https://doi.org/10.1016/j.actamat.2015.12.036
Bridging room-temperature and high-temperature plasticity in decagonal Al–Ni–Co quasicrystals by micro-thermomechanical testing
Zou, Y., Wheeler, J. M., Sologubenko, A. S., Michler, J., Steurer, W., & Spolenak, R. (2016). Bridging room-temperature and high-temperature plasticity in decagonal Al–Ni–Co quasicrystals by micro-thermomechanical testing. Philosophical Magazine, 96(32-34), 3356-3378. https://doi.org/10.1080/14786435.2016.1234722
Mechanical anisotropy in electrodeposited copper with highly-oriented nanoscale twins
Mieszala, M., Guillonneau, G., Wheeler, J. M., Raghavan, R., Hasegawa, M., Mischler, S., … Philippe, L. (2015). Mechanical anisotropy in electrodeposited copper with highly-oriented nanoscale twins. Presented at the Nanomechanical testing in materials research and development V. Marseille, FR.
Orientation-dependent machanical behaviour of electrodeposited Cu with nanoscale twins
Mieszala, M., Guillonneau, G., Wheeler, J. M., Raghavan, R., Hasegawa, M., Mischler, S., … Philippe, L. (2015). Orientation-dependent machanical behaviour of electrodeposited Cu with nanoscale twins. Presented at the Nanomechanical testing in materials research and development V. Albufeira, PT.
Elevated temperature microcompression stress relaxation tests on nanocrystalline nickel
Mohanty, G., Wehrs, J., Wheeler, J. M., Boyce, B. L., Taylor, A., Hasegawa, M., … Michler, J. (2015). Elevated temperature microcompression stress relaxation tests on nanocrystalline nickel. Presented at the Nanomechanical testing in materials research and development V. Albufeira, PT.
Elevated temperature, strain rate jump microcompression of nanocrystalline nickel
Mohanty, G., Wheeler, J. M., Raghavan, R., Wehrs, J., Hasegawa, M., Mischler, S., … Michler, J. (2015). Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philosophical Magazine, 95(16-18), 1878-1895. https://doi.org/10.1080/14786435.2014.951709