| The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells
Holzer, L., Wiedenmann, D., Münch, D., Keller, L., Prestat, M., Gasser, P., … Grobéty, B. (2013). The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells. Journal of Materials Science, 48(7), 2934-2952. https://doi.org/10.1007/s10853-012-6968-z |
| Three-dimensional pore structure and ion conductivity of porous ceramic diaphragms
Wiedenmann, D., Keller, L., Holzer, L., Stojadinović, J., Münch, B., Suarez, L., … Grobéty, B. (2013). Three-dimensional pore structure and ion conductivity of porous ceramic diaphragms. AICHE Journal, 59(5), 1446-1457. https://doi.org/10.1002/aic.14094 |
| Electrochemical characterization of porous diaphragms in development for gas separation
Stojadinović, J., Wiedenmann, D., Gorbar, M., La Mantia, F., Suarez, L., Zakaznova-Herzog, V., … Züttel, A. (2012). Electrochemical characterization of porous diaphragms in development for gas separation. ECS Electrochemistry Letters, 1(4), F25-F28. https://doi.org/10.1149/2.002204eel |
| Microstructure degradation of cermet anodes for solid oxide fuel cells: quantification of nickel grain growth in dry and in humid atmospheres
Holzer, L., Iwanschitz, B., Hocker, T., Münch, B., Prestat, M., Wiedenmann, D., … Graule, T. (2011). Microstructure degradation of cermet anodes for solid oxide fuel cells: quantification of nickel grain growth in dry and in humid atmospheres. Journal of Power Sources, 196(3), 1279-1294. https://doi.org/10.1016/j.jpowsour.2010.08.017 |
| Complementary techniques for solid oxide electrolysis cell characterisation at the micro- and nano-scale
Wiedenmann, D., Hauch, A., Grobéty, B., Mogensen, M., & Vogt, U. F. (2010). Complementary techniques for solid oxide electrolysis cell characterisation at the micro- and nano-scale. International Journal of Hydrogen Energy, 35(10), 5053-5060. https://doi.org/10.1016/j.ijhydene.2009.09.074 |
| Melilite-group minerals at Oldoinyo Lengai, Tanzania
Wiedenmann, D., Keller, J., & Zaitsev, A. N. (2010). Melilite-group minerals at Oldoinyo Lengai, Tanzania. Lithos, 118(1-2), 112-118. https://doi.org/10.1016/j.lithos.2010.04.002 |
| Influence of A-site variation and B-site substitution on the physical properties of (La,Sr)FeO<SUB>3</SUB> based perovskites
Vogt, U. F., Holtappels, P., Sfeir, J., Richter, J., Duval, S., Wiedenmann, D., & Züttel, A. (2009). Influence of A-site variation and B-site substitution on the physical properties of (La,Sr)FeO3 based perovskites. Fuel Cells, 9(6), 899-906. https://doi.org/10.1002/fuce.200800116 |
| Alumoåkermanite, (Ca,Na)<sub>2</sub>(Al,Mg,Fe<sup>2+</sup>)(Si<sub>2</sub>O<sub>7</sub>), a new mineral from the active carbonatite-nephelinite-phonolite volcano Oldoinyo Lengai, northern Tanzania
Wiedenmann, D., Zaitsev, A. N., Britvin, S. N., Krivovichev, S. V., & Keller, J. (2009). Alumoåkermanite (Ca,Na)2(Al,Mg,Fe2+)(Si2O7), a new mineral from the active carbonatite-nephelinite-phonolite volcano Oldoinyo Lengai, northern Tanzania. Mineralogical Magazine, 73(3), 373-384. https://doi.org/10.1180/minmag.2009.073.3.373 |
| WDX studies on ceramic diffusion barrier layers of metal supported SOECs
Wiedenmann, D., Vogt, U. F., Soltmann, C., Patz, O., Schiller, G., & Grobéty, B. (2009). WDX studies on ceramic diffusion barrier layers of metal supported SOECs. Fuel Cells, 9(6), 861-866. https://doi.org/10.1002/fuce.200800118 |