Active Filters

  • (-) Empa Authors = Zhao, Shanyu
  • (-) Journal ≠ Angewandte Chemie
Search Results 1 - 20 of 78

Pages

  • RSS Feed
Select Page
Study of electrical and dielectric behaviors of copper-doped zinc oxide ceramic prepared by Spark Plasma Sintering for electronic device applications
Benamara, M., Iben Nassar, K., Rivero-Antúnez, P., Essid, M., Soreto Teixeira, S., Zhao, S., … Esquivias, L. (2024). Study of electrical and dielectric behaviors of copper-doped zinc oxide ceramic prepared by Spark Plasma Sintering for electronic device applications. Nanomaterials, 14(5), 402 (16 pp.). https://doi.org/10.3390/nano14050402
The poor reliability of thermal conductivity data in the aerogel literature: a call to action!
Malfait, W. J., Ebert, H. P., Brunner, S., Wernery, J., Galmarini, S., Zhao, S., & Reichenauer, G. (2024). The poor reliability of thermal conductivity data in the aerogel literature: a call to action!. Journal of Sol-Gel Science and Technology, 109, 569-579. https://doi.org/10.1007/s10971-023-06282-9
Enhancing interface connectivity for multifunctional magnetic carbon aerogels: an in situ growth strategy of metal-organic frameworks on cellulose nanofibrils
Qiao, J., Song, Q., Zhang, X., Zhao, S., Liu, J., Nyström, G., & Zeng, Z. (2024). Enhancing interface connectivity for multifunctional magnetic carbon aerogels: an in situ growth strategy of metal-organic frameworks on cellulose nanofibrils. Advanced Science. https://doi.org/10.1002/advs.202400403
Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties
Sivaraman, D., Nagel, Y., Siqueira, G., Chansoria, P., Avaro, J., Neels, A., … Zhao, S. (2024). Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties. Advanced Science. https://doi.org/10.1002/advs.202307921
Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption
Zhang, X., Tian, X., Wu, N., Zhao, S., Qin, Y., Pan, F., … Zeng, Z. (2024). Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Science Advances, 10(11), eadl6498 (10 pp.). https://doi.org/10.1126/sciadv.adl6498
The aerogel industry
Collins, R. A., Zhao, S., Wang, J., Griffin, J. S., & Steiner III, S. A. (2023). The aerogel industry. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer handbooks: Vol. 2522-8706. Springer handbook of aerogels (pp. 1583-1640). https://doi.org/10.1007/978-3-030-27322-4_64
FireDrone: multi-environment thermally agnostic aerial robot
Häusermann, D., Bodry, S., Wiesemüller, F., Miriyev, A., Siegrist, S., Fu, F., … Kovač, M. (2023). FireDrone: multi-environment thermally agnostic aerial robot. Advanced Intelligent Systems, 5(9), 2300101 (11 pp.). https://doi.org/10.1002/aisy.202300101
Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
Li, L., Zhou, Y., Gao, Y., Feng, X., Zhang, F., Li, W., … Wu, H. (2023). Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition. Nature Communications, 14(1), 5410 (11 pp.). https://doi.org/10.1038/s41467-023-41087-y
Silica aerogels: from materials research to industrial applications
Li, C., Zhang, G., Lin, L., Wu, T., Brunner, S., Galmarini, S., … Ostrikov, K. (2023). Silica aerogels: from materials research to industrial applications. International Materials Reviews, 68(7), 862-900. https://doi.org/10.1080/09506608.2023.2167547
Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels
Nagel, Y., Sivaraman, D., Neels, A., Zimmermann, T., Zhao, S., Siqueira, G., & Nyström, G. (2023). Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels. Small Structures, 4(12), 2300073 (9 pp.). https://doi.org/10.1002/sstr.202300073
Recipes and designs for aerogels
Steiner III, S. A., Anderson, A. M., Brock, S. L., Buckwalter, M. C., Carroll, M. K., De Pooter, S., … Zhao, S. (2023). Recipes and designs for aerogels. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer handbooks. Springer handbook of aerogels (pp. 1643-1728). https://doi.org/10.1007/978-3-030-27322-4_65
Aerogel-based solar-powered water production from atmosphere and ocean: a review
Sun, J., Wu, T., Wu, H., Li, W., Li, L., Liu, S., … Zhao, S. (2023). Aerogel-based solar-powered water production from atmosphere and ocean: a review. Materials Science and Engineering: R Reports, 154, 100735 (38 pp.). https://doi.org/10.1016/j.mser.2023.100735
Sodium silicate-based aerogels by ambient pressure drying
Venkateswara Rao, A., Zhao, S., Pajonk, G. M., Bangi, U. K. H., Parvathy Rao, A., & Koebel, M. M. (2023). Sodium silicate-based aerogels by ambient pressure drying. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer handbooks. Springer handbook of aerogels (pp. 393-417). https://doi.org/10.1007/978-3-030-27322-4_16
Flexible, high-temperature-resistant silica-polymer aerogel hybrids by templating polymethylsilsesquioxane microstructure with trace polyimide
Wang, X., Zhang, Z., Wang, Y., Malfait, W. J., Zhao, S., Tian, Y., … Shen, J. (2023). Flexible, high-temperature-resistant silica-polymer aerogel hybrids by templating polymethylsilsesquioxane microstructure with trace polyimide. Advanced Composites and Hybrid Materials, 6, 32 (14 pp.). https://doi.org/10.1007/s42114-022-00587-z
3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management
Wu, T., Ganobjak, M., Siqueira, G., Zeng, Z., Li, M., Filimonova, E., … Zhao, S. (2023). 3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management. Advanced Materials Technologies, 8(14), 2202155 (9 pp.). https://doi.org/10.1002/admt.202202155
Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption
Zhang, X., Tian, X. L., Qin, Y., Qiao, J., Pan, F., Wu, N., … Zeng, Z. (2023). Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano, 17(13), 12510-12518. https://doi.org/10.1021/acsnano.3c02170
Biopolymer-silica aerogel nanocomposites 25
Zhao, S., Malfait, W. J., Yao, C. J., Liu, X., Koebel, M. M., & Risen, W. M. (2023). Biopolymer-silica aerogel nanocomposites 25. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer handbooks. Springer handbook of aerogels (pp. 653-675). https://doi.org/10.1007/978-3-030-27322-4_25
Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal
Drdova, S., Zhao, S., Giannakou, M., Sivaraman, D., Guerrero-Alburquerque, N., Bonnin, A., … Wang, J. (2022). Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal. Advanced Science, 9(11), 2105819 (10 pp.). https://doi.org/10.1002/advs.202105819
Surfactant-free, flexible polymethylsilsesquioxane foams
Huber, L., Hauser, S. B., Ubert, C. J., Rees, M., Fischer, B., Zhao, S., … Malfait, W. J. (2022). Surfactant-free, flexible polymethylsilsesquioxane foams. Journal of Non-Crystalline Solids, 597, 121887 (8 pp.). https://doi.org/10.1016/j.jnoncrysol.2022.121887
Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites
Kantor, Z., Wu, T., Zeng, Z., Gaan, S., Lehner, S., Jovic, M., … Zhao, S. (2022). Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites. Chemical Engineering Journal, 443, 136401 (11 pp.). https://doi.org/10.1016/j.cej.2022.136401
 

Pages