Active Filters

  • (-) Empa Authors = Zimmermann, Tanja
Search Results 1 - 20 of 115

Pages

  • RSS Feed
Select Page
3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels
Fourmann, O., Hausmann, M. K., Neels, A., Schubert, M., Nyström, G., Zimmermann, T., & Siqueira, G. (2021). 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 259, 117716 (11 pp.). https://doi.org/10.1016/j.carbpol.2021.117716
Cellulose-based microparticles for magnetically controlled optical modulation and sensing
Hausmann, M. K., Hauser, A., Siqueira, G., Libanori, R., Vehusheia, S. L., Schuerle, S., … Studart, A. R. (2020). Cellulose-based microparticles for magnetically controlled optical modulation and sensing. Small, 16(1), 1904251 (8 pp.). https://doi.org/10.1002/smll.201904251
Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds
Hausmann, M. K., Siqueira, G., Libanori, R., Kokkinis, D., Neels, A., Zimmermann, T., & Studart, A. R. (2020). Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds. Advanced Functional Materials, 30(4), 1904127 (11 pp.). https://doi.org/10.1002/adfm.201904127
Mechanical properties tailoring of 3D printed photoresponsive nanocellulose composites
Müller, L. A. E., Zimmermann, T., Nyström, G., Burgert, I., & Siqueira, G. (2020). Mechanical properties tailoring of 3D printed photoresponsive nanocellulose composites. Advanced Functional Materials, 30(35), 2002914 (9 pp.). https://doi.org/10.1002/adfm.202002914
Ultra-porous nanocellulose foams: a facile and scalable fabrication approach
Antonini, C., Wu, T., Zimmermann, T., Kherbeche, A., Thoraval, M. J., Nyström, G., & Geiger, T. (2019). Ultra-porous nanocellulose foams: a facile and scalable fabrication approach. Nanomaterials, 9(8), 1142 (14 pp.). https://doi.org/10.3390/nano9081142
3D printed disposable wireless ion sensors with biocompatible cellulose composites
Kim, T., Bao, C., Hausmann, M., Siqueira, G., Zimmermann, T., & Kim, W. S. (2019). 3D printed disposable wireless ion sensors with biocompatible cellulose composites. Advanced Electronic Materials, 5(2), 1800778 (7 pp.). https://doi.org/10.1002/aelm.201800778
Improved mechanical properties of bitumen modified with acetylated cellulose fibers
Desseaux, S., dos Santos, S., Geiger, T., Tingaut, P., Zimmermann, T., Partl, M. N., & Poulikakos, L. D. (2018). Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Composites Part B: Engineering, 140, 139-144. https://doi.org/10.1016/j.compositesb.2017.12.010
Dynamics of cellulose nanocrystal alignment during 3D printing
Hausmann, M. K., Rühs, P. A., Siqueira, G., Läuger, J., Libanori, R., Zimmermann, T., & Studart, A. R. (2018). Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano, 12(7), 6926-6937. https://doi.org/10.1021/acsnano.8b02366
Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments
Orsolini, P., Antonini, C., Stojanovic, A., Malfait, W. J., Caseri, W. R., & Zimmermann, T. (2018). Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments. Cellulose, 25(2), 1127-1146. https://doi.org/10.1007/s10570-017-1636-8
Nanoparticles capture on cellulose nanofiber depth filters
Sehaqui, H., Spera, P., Huch, A., & Zimmermann, T. (2018). Nanoparticles capture on cellulose nanofiber depth filters. Carbohydrate Polymers, 201, 482-489. https://doi.org/10.1016/j.carbpol.2018.07.068
Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension
Weishaupt, R., Heuberger, L., Siqueira, G., Gutt, B., Zimmermann, T., Maniura-Weber, K., … Faccio, G. (2018). Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension. ACS Applied Materials and Interfaces, 10(23), 20170-20181. https://doi.org/10.1021/acsami.8b04470
The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer
Buffiere, J., Balogh-Michels, Z., Borrega, M., Geiger, T., Zimmermann, T., & Sixta, H. (2017). The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydrate Polymers, 178, 48-56. https://doi.org/10.1016/j.carbpol.2017.09.028
Microfibrillated cellulose foams obtained by a straightforward freeze-thawing-drying procedure
Josset, S., Hansen, L., Orsolini, P., Griffa, M., Kuzior, O., Weisse, B., … Geiger, T. (2017). Microfibrillated cellulose foams obtained by a straightforward freeze-thawing-drying procedure. Cellulose, 24(9), 3825-3842. https://doi.org/10.1007/s10570-017-1377-8
Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration
Sehaqui, H., Kulasinski, K., Pfenninger, N., Zimmermann, T., & Tingaut, P. (2017). Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration. Biomacromolecules, 18(1), 242-248. https://doi.org/10.1021/acs.biomac.6b01548
Humic acid desorption from a positively charged nanocellulose surface
Sehaqui, H., Schaufelberger, L., Michen, B., & Zimmermann, T. (2017). Humic acid desorption from a positively charged nanocellulose surface. Journal of Colloid and Interface Science, 504, 500-506. https://doi.org/10.1016/j.jcis.2017.06.006
Cellulose nanocrystal inks for 3D printing of textured cellular architectures
Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M. K., Gladman, A. S., Neels, A., … Studart, A. R. (2017). Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials, 27(12), 1604619 (10 pp.). https://doi.org/10.1002/adfm.201604619
3D printing of nano-cellulosic biomaterials for medical applications
Sultan, S., Siqueira, G., Zimmermann, T., & Mathew, A. P. (2017). 3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering, 2, 29-34. https://doi.org/10.1016/j.cobme.2017.06.002
Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose
Veigel, S., Lems, E. M., Grüll, G., Hansmann, C., Rosenau, T., Zimmermann, T., & Gindl-Altmutter, W. (2017). Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose. Polymers, 9(9), 425 (13 pp.). https://doi.org/10.3390/polym9090425
A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level
Weishaupt, R., Siqueira, G., Schubert, M., Kämpf, M. M., Zimmermann, T., Maniura-Weber, K., & Faccio, G. (2017). A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. Advanced Functional Materials, 27(4), 1604291 (10 pp.). https://doi.org/10.1002/adfm.201604291
Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose
Winter, A., Andorfer, L., Herzele, S., Zimmermann, T., Saake, B., Edler, M., … Gindl-Altmutter, W. (2017). Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose. Journal of Materials Science, 52(1), 60-72. https://doi.org/10.1007/s10853-016-0439-x
 

Pages