Active Filters

  • (-) Empa Authors = Borgschulte, Andreas
  • (-) Publication Type = Journal Article
Search Results 1 - 20 of 132

Pages

  • RSS Feed
Select Page
Why hydrogen dissociation catalysts do not work for hydrogenation of magnesium
Kazaz, S., Billeter, E., Longo, F., Borgschulte, A., & Łodziana, Z. (2024). Why hydrogen dissociation catalysts do not work for hydrogenation of magnesium. Advanced Science, 11(7), 2304603 (11 pp.). https://doi.org/10.1002/advs.202304603
Operando surface hydrogen analysis by plasmon spectroscopy
Borgschulte, A., Billeter, E., & Kazaz, S. (2023). Operando surface hydrogen analysis by plasmon spectroscopy. Chimia, 77(10), 693. https://doi.org/10.2533/chimia.2023.693
Editorial: rising stars in energy research: 2022
Li, Y., Dai, N., Van Sark, W. G. J. H. M., Aghaei, M., Malara, G., Henriques, J. C. C., … Hardy, J. S. (2023). Editorial: rising stars in energy research: 2022. Frontiers in Energy Research, 11, 1226618 (2 pp.). https://doi.org/10.3389/fenrg.2023.1226618
Deep core level hard X‐ray photoelectron spectroscopy for catalyst characterization
Longo, F., Nikolic, M., & Borgschulte, A. (2023). Deep core level hard X‐ray photoelectron spectroscopy for catalyst characterization. Surface and Interface Analysis. https://doi.org/10.1002/sia.7267
Hard X-ray photoelectron spectroscopy reveals self-organized structures of electrocatalytic nickel oxy-hydroxides
Longo, F., Billeter, E., Kazaz, S., Cesarini, A., Nikolic, M., Chacko, A., … Borgschulte, A. (2023). Hard X-ray photoelectron spectroscopy reveals self-organized structures of electrocatalytic nickel oxy-hydroxides. Surface Science, 739, 122397 (11 pp.). https://doi.org/10.1016/j.susc.2023.122397
Synthesis and electronic structure of mid-infrared absorbing Cu<sub>3</sub>SbSe<sub>4</sub> and Cu<em><sub>x</sub></em>SbSe<sub>4</sub> nanocrystals
Moser, A., Yarema, O., Garcia, G., Luisier, M., Longo, F., Billeter, E., … Wood, V. (2023). Synthesis and electronic structure of mid-infrared absorbing Cu3SbSe4 and CuxSbSe4 nanocrystals. Chemistry of Materials, 35(16), 6323-6331. https://doi.org/10.1021/acs.chemmater.3c00911
Hydrogen transport and evolution in Ni-MH batteries by neutron imaging
Nikolic, M., Cesarini, A., Billeter, E., Weyand, F., Trtik, P., Strobl, M., & Borgschulte, A. (2023). Hydrogen transport and evolution in Ni-MH batteries by neutron imaging. Angewandte Chemie International Edition, 62(45), e202307367 (6 pp.). https://doi.org/10.1002/anie.202307367
Neutronen machen Wasserstofftransport und Gasbildung in Ni‐Metallhydrid‐Batterien sichtbar
Nikolic, M., Cesarini, A., Billeter, E., Weyand, F., Trtik, P., Strobl, M., & Borgschulte, A. (2023). Neutronen machen Wasserstofftransport und Gasbildung in Ni‐Metallhydrid‐Batterien sichtbar. Angewandte Chemie, 135(45), e202307367 (7 pp.). https://doi.org/10.1002/ange.202307367
Bulk thermodynamics determines surface hydrogen concentration in membranes
Billeter, E., Kazaz, S., & Borgschulte, A. (2022). Bulk thermodynamics determines surface hydrogen concentration in membranes. Advanced Materials Interfaces, 9(23), 2200767 (10 pp.). https://doi.org/10.1002/admi.202200767
Imaging the chemistry of materials kinetics
Borgschulte, A., Billeter, E., Cesarini, A., Hemani, Y., Knobloch, M., Kraft, K., … Bleiner, D. (2022). Imaging the chemistry of materials kinetics. Chimia, 76(3), 192-202. https://doi.org/10.2533/chimia.2022.192
Short-lived interfaces in energy materials
Borgschulte, A., Terreni, J., Fumey, B., Sambalova, O., & Billeter, E. (2022). Short-lived interfaces in energy materials. Frontiers in Energy Research, 9, 784082 (13 pp.). https://doi.org/10.3389/fenrg.2021.784082
Editorial: Frontiers in Energy Research: rising stars
Dong, Z. Y., Zhang, S. S., Revankar, S. T., Park, A. H. A., Borgschulte, A., Toney, M. F., & Schröder, U. (2022). Editorial: Frontiers in Energy Research: rising stars. Frontiers in Energy Research, 10, 934319 (2 pp.). https://doi.org/10.3389/fenrg.2022.934319
Enhanced gas-liquid absorption through natural convection studied by neutron imaging
Fumey, B., Borgschulte, A., Stoller, S., Fricker, R., Knechtle, R., Kaestner, A., … Baldini, L. (2022). Enhanced gas-liquid absorption through natural convection studied by neutron imaging. International Journal of Heat and Mass Transfer, 182, 121967 (11 pp.). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121967
Sorption kinetics in metal hydrides by leaky coating
Kazaz, S., Billeter, E., & Borgschulte, A. (2022). Sorption kinetics in metal hydrides by leaky coating. International Journal of Hydrogen Energy, 47(78), 33403-33409. https://doi.org/10.1016/j.ijhydene.2022.07.248
Sorption-enhanced methane synthesis in fixed-bed reactors
Kiefer, F., Nikolic, M., Borgschulte, A., & Dimopoulos Eggenschwiler, P. (2022). Sorption-enhanced methane synthesis in fixed-bed reactors. Chemical Engineering Journal, 449, 137872 (11 pp.). https://doi.org/10.1016/j.cej.2022.137872
Combinatorial neutron imaging methods for hydrogenation catalysts
Nikolic, M., Longo, F., Billeter, E., Cesarini, A., Trtik, P., & Borgschulte, A. (2022). Combinatorial neutron imaging methods for hydrogenation catalysts. Physical Chemistry Chemical Physics, 24(44), 27394-27405. https://doi.org/10.1039/D2CP03863C
Sorptionsverstärkte Methanisierung. Neue Anlage Mobilitätsdemonstrator «Move» der Empa
Bach, C., Kiefer, F., Schröter, K., Gonzalez, A., Eggenschwiler, P. D., & Borgschulte, A. (2021). Sorptionsverstärkte Methanisierung. Neue Anlage Mobilitätsdemonstrator «Move» der Empa. Aqua & Gas, 101(3), 54-59.
Hydrogen in tungsten trioxide by membrane photoemission and density functional theory modeling
Billeter, E., Sterzi, A., Sambalova, O., Wick-Joliat, R., Grazioli, C., Coreno, M., … Borgschulte, A. (2021). Hydrogen in tungsten trioxide by membrane photoemission and density functional theory modeling. Physical Review B, 103(20), 205304 (11 pp.). https://doi.org/10.1103/PhysRevB.103.205304
Surface properties of the hydrogen-titanium system
Billeter, E., Łodziana, Z., & Borgschulte, A. (2021). Surface properties of the hydrogen-titanium system. Journal of Physical Chemistry C, 125(45), 25339-25349. https://doi.org/10.1021/acs.jpcc.1c08635
Cataluminescence in Er-Substituted perovskites
Borgschulte, A., Sambalova, O., Billeter, E., Sterzi, A., Niggli, J., Welte, B., … Holzner, R. (2021). Cataluminescence in Er-Substituted perovskites. Advanced Science, 8(19), 210764 (8 pp.). https://doi.org/10.1002/advs.202101764
 

Pages