Active Filters

  • (-) Empa Authors = Perrin, Mickael L.
  • (-) Keywords ≠ Raman spectroscopy
Search Results 1 - 20 of 25
Select Page
Influence of peripheral alkyl groups on junction configurations in single-molecule electronics
Ornago, L., Zwick, P., van der Poel, S., Brandl, T., El Abbassi, M., Perrin, M. L., … Mayor, M. (2024). Influence of peripheral alkyl groups on junction configurations in single-molecule electronics. Journal of Physical Chemistry C, 128(3), 1413-1422. https://doi.org/10.1021/acs.jpcc.3c06970
Electric field tunable bandgap in twisted double trilayer graphene
Perrin, M. L., Jayaraj, A., Ghawri, B., Watanabe, K., Taniguchi, T., Passerone, D., … Zhang, J. (2024). Electric field tunable bandgap in twisted double trilayer graphene. npj 2D Materials and Applications, 8. https://doi.org/10.1038/s41699-024-00449-w
On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges
Borin Barin, G., Di Giovannantonio, M., Lohr, T. G., Mishra, S., Kinikar, A., Perrin, M., … Ruffieux, P. (2023). On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges. Nanoscale, 15(41), 16766-16774. https://doi.org/10.1039/D3NR03736C
Edge contacts to atomically precise graphene nanoribbons
Huang, W., Braun, O., Indolese, D. I., Borin Barin, G., Gandus, G., Stiefel, M., … Perrin, M. L. (2023). Edge contacts to atomically precise graphene nanoribbons. ACS Nano, 17, 18706-18715. https://doi.org/10.1021/acsnano.3c00782
Electronic Poiseuille flow in hexagonal boron nitride encapsulated graphene field effect transistors
Huang, W., Paul, T., Watanabe, K., Taniguchi, T., Perrin, M. L., & Calame, M. (2023). Electronic Poiseuille flow in hexagonal boron nitride encapsulated graphene field effect transistors. Physical Review Research, 5(2), 023075 (11 pp.). https://doi.org/10.1103/PhysRevResearch.5.023075
Exciton-assisted electron tunnelling in van der Waals heterostructures
Wang, L., Papadopoulos, S., Iyikanat, F., Zhang, J., Huang, J., Taniguchi, T., … Novotny, L. (2023). Exciton-assisted electron tunnelling in van der Waals heterostructures. Nature Materials, 22, 1094-1099. https://doi.org/10.1038/s41563-023-01556-7
Contacting individual graphene nanoribbons using carbon nanotube electrodes
Zhang, J., Qian, L., Borin Barin, G., Daaoub, A. H. S., Chen, P., Müllen, K., … Perrin, M. L. (2023). Contacting individual graphene nanoribbons using carbon nanotube electrodes. Nature Electronics, 6, 572-581. https://doi.org/10.1038/s41928-023-00991-3
Determining the number of graphene nanoribbons in dual-gate field-effect transistors
Zhang, J., Borin Barin, G., Furrer, R., Du, C. Z., Wang, X. Y., Müllen, K., … Perrin, M. L. (2023). Determining the number of graphene nanoribbons in dual-gate field-effect transistors. Nano Letters, 23(18), 8474-8480. https://doi.org/10.1021/acs.nanolett.3c01931
Double quantum dots in atomically-precise graphene nanoribbons
Zhang, J., Qian, L., Borin Barin, G., Chen, P., Müllen, K., Ruffieux, P., … Perrin, M. L. (2023). Double quantum dots in atomically-precise graphene nanoribbons. Materials for Quantum Technology, 3(3), 036201 (8 pp.). https://doi.org/10.1088/2633-4356/acfa57
Quantum transport through a single atomically precise graphene nanoribbon
Zhang, J., & Perrin, M. L. (2023). Quantum transport through a single atomically precise graphene nanoribbon. Nature Electronics, 6(8), 553-554. https://doi.org/10.1038/s41928-023-00992-2
Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture
Zhang, J., Braun, O., Borin Barin, G., Sangtarash, S., Overbeck, J., Darawish, R., … Calame, M. (2023). Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture. Advanced Electronic Materials, 9(4), 2201204 (8 pp.). https://doi.org/10.1002/aelm.202201204
Spatially mapping thermal transport in graphene by an opto-thermal method
Braun, O., Furrer, R., Butti, P., Thodkar, K., Shorubalko, I., Zardo, I., … Perrin, M. L. (2022). Spatially mapping thermal transport in graphene by an opto-thermal method. npj 2D Materials and Applications, 6, 6 (7 pp.). https://doi.org/10.1038/s41699-021-00277-2
Redox-controlled conductance of polyoxometalate molecular junctions
Huez, C., Guérin, D., Lenfant, S., Volatron, F., Calame, M., Perrin, M. L., … Vuillaume, D. (2022). Redox-controlled conductance of polyoxometalate molecular junctions. Nanoscale, 37(14), 13790-13800. https://doi.org/10.1039/D2NR03457C
Contacting atomically precise graphene nanoribbons for next-generation quantum electronics
Zhang, J., Calame, M., & Perrin, M. L. (2022). Contacting atomically precise graphene nanoribbons for next-generation quantum electronics. Matter, 5(8), 2497-2499. https://doi.org/10.1016/j.matt.2022.06.036
High-speed identification of suspended carbon nanotubes using Raman spectroscopy and deep learning
Zhang, J., Perrin, M. L., Barba, L., Overbeck, J., Jung, S., Grassy, B., … Calame, M. (2022). High-speed identification of suspended carbon nanotubes using Raman spectroscopy and deep learning. Microsystems and Nanoengineering, 8, 19 (9 pp.). https://doi.org/10.1038/s41378-022-00350-w
Benchmark and application of unsupervised classification approaches for univariate data
El Abbassi, M., Overbeck, J., Braun, O., Calame, M., van der Zant, H. S. J., & Perrin, M. L. (2021). Benchmark and application of unsupervised classification approaches for univariate data. Communications Physics, 4, 50 (9 pp.). https://doi.org/10.1038/s42005-021-00549-9
Single-molecule functionality in electronic components based on orbital resonances
Perrin, M. L., Eelkema, R., Thijssen, J., Grozema, F. C., & Van Der Zant, H. S. J. (2020). Single-molecule functionality in electronic components based on orbital resonances. Physical Chemistry Chemical Physics, 22(23), 12849-12866. https://doi.org/10.1039/d0cp01448f
Massive dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary
Sun, Q., Gröning, O., Overbeck, J., Braun, O., Perrin, M. L., Borin Barin, G., … Ruffieux, P. (2020). Massive dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary. Advanced Materials, 32(12), 1906054 (8 pp.). https://doi.org/10.1002/adma.201906054
A reference-free clustering method for the analysis of molecular break-junction measurements
Cabosart, D., El Abbassi, M., Stefani, D., Frisenda, R., Calame, M., van der Zant, H. S. J., & Perrin, M. L. (2019). A reference-free clustering method for the analysis of molecular break-junction measurements. Applied Physics Letters, 114(14), 143102 (5 pp.). https://doi.org/10.1063/1.5089198
Robust graphene-based molecular devices
El Abbassi, M., Sangtarash, S., Liu, X., Perrin, M. L., Braun, O., Lambert, C., … Calame, M. (2019). Robust graphene-based molecular devices. Nature Nanotechnology, 14(10), 957-961. https://doi.org/10.1038/s41565-019-0533-8