Active Filters

  • (-) Empa Authors = Benetti, Edmondo M.
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Biomaterials applications of cyclic polymers
Golba, B., Benetti, E. M., & De Geest, B. G. (2021). Biomaterials applications of cyclic polymers. Biomaterials, 267, 120468 (13 pp.). https://doi.org/10.1016/j.biomaterials.2020.120468
Hydrogels generated from cyclic poly(2-Oxazoline)s display unique swelling and mechanical properties
Trachsel, L., Romio, M., Zenobi-Wong, M., & Benetti, E. M. (2021). Hydrogels generated from cyclic poly(2-Oxazoline)s display unique swelling and mechanical properties. Macromolecular Rapid Communications, 42(7), 2000658 (6 pp.). https://doi.org/10.1002/marc.202000658
The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication
Trachsel, L., Zenobi-Wong, M., & Benetti, E. M. (2021). The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication. Biomaterials Science, 9(8), 2874-2886. https://doi.org/10.1039/d0bm02217a
Topology and molecular architecture of polyelectrolytes determine their pH-responsiveness when assembled on surfaces
Trachsel, L., Ramakrishna, S. N., Romio, M., Spencer, N. D., & Benetti, E. M. (2021). Topology and molecular architecture of polyelectrolytes determine their pH-responsiveness when assembled on surfaces. ACS Macro Letters, 10(1), 90-97. https://doi.org/10.1021/acsmacrolett.0c00750
Mechanism and application of surface-initiated ATRP in the presence of a Zn<sup>0</sup> plate
Faggion Albers, R., Yan, W., Romio, M., Leite, E. R., Spencer, N. D., Matyjaszewski, K., & Benetti, E. M. (2020). Mechanism and application of surface-initiated ATRP in the presence of a Zn0 plate. Polymer Chemistry, 11(44), 7009-7014. https://doi.org/10.1039/d0py01233e
Oxygen tolerant and cytocompatible iron(0)-mediated ATRP enables the controlled growth of polymer brushes from mammalian cell cultures
Layadi, A., Kessel, B., Yan, W., Romio, M., Spencer, N. D., Zenobi-Wong, M., … Benetti, E. M. (2020). Oxygen tolerant and cytocompatible iron(0)-mediated ATRP enables the controlled growth of polymer brushes from mammalian cell cultures. Journal of the American Chemical Society, 142(6), 3158-3164. https://doi.org/10.1021/jacs.9b12974
Topological polymer chemistry enters materials science: expanding the applicability of cyclic polymers
Romio, M., Trachsel, L., Morgese, G., Ramakrishna, S. N., Spencer, N. D., & Benetti, E. M. (2020). Topological polymer chemistry enters materials science: expanding the applicability of cyclic polymers. ACS Macro Letters, 9(7), 1024-1033. https://doi.org/10.1021/acsmacrolett.0c00358
Fabrication of biopassive surfaces using Poly(2-alkyl-2-oxazoline)s: recent progresses and applications
Trachsel, L., Romio, M., Ramakrishna, S. N., & Benetti, E. M. (2020). Fabrication of biopassive surfaces using Poly(2-alkyl-2-oxazoline)s: recent progresses and applications. Advanced Materials Interfaces, 7(19), 2000943 (9 pp.). https://doi.org/10.1002/admi.202000943
Functional nanoassemblies of cyclic polymers show amplified responsiveness and enhanced protein-binding ability
Trachsel, L., Romio, M., Grob, B., Zenobi-Wong, M., Spencer, N. D., Ramakrishna, S. N., & Benetti, E. M. (2020). Functional nanoassemblies of cyclic polymers show amplified responsiveness and enhanced protein-binding ability. ACS Nano, 14(8), 10054-10067. https://doi.org/10.1021/acsnano.0c03239
Surface-initiated photoinduced ATRP: mechanism, oxygen tolerance, and temporal control during the synthesis of polymer brushes
Yan, W., Dadashi-Silab, S., Matyjaszewski, K., Spencer, N. D., & Benetti, E. M. (2020). Surface-initiated photoinduced ATRP: mechanism, oxygen tolerance, and temporal control during the synthesis of polymer brushes. Macromolecules, 53(8), 2801-2810. https://doi.org/10.1021/acs.macromol.0c00333
Versatile surface modification of hydrogels by surface-initiated, Cu<sup>0</sup> -mediated controlled radical polymerization
Zhang, K., Yan, W., Simic, R., Benetti, E. M., & Spencer, N. D. (2020). Versatile surface modification of hydrogels by surface-initiated, Cu0 -mediated controlled radical polymerization. ACS Applied Materials and Interfaces, 12(5), 6761-6767. https://doi.org/10.1021/acsami.9b21399
Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs
Trachsel, L., Johnbosco, C., Lang, T., Benetti, E. M., & Zenobi-Wong, M. (2019). Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs. Biomacromolecules, 20, 4502-4511. https://doi.org/10.1021/acs.biomac.9b01266
Influence of the aliphatic side chain on the near atmospheric pressure plasma polymerization of 2-alkyl-2-oxazolines for biomedical applications
Van Guyse, J. F. R., Cools, P., Egghe, T., Asadian, M., Vergaelen, M., Rigole, P., … De Geyter, N. (2019). Influence of the aliphatic side chain on the near atmospheric pressure plasma polymerization of 2-alkyl-2-oxazolines for biomedical applications. ACS Applied Materials and Interfaces, 11(34), 31356-31366. https://doi.org/10.1021/acsami.9b09999
Bioinert and lubricious surfaces by macromolecular design
Yan, W., Ramakrishna, S. N., Romio, M., & Benetti, E. M. (2019). Bioinert and lubricious surfaces by macromolecular design. Langmuir, 35(42), 13521-13535. https://doi.org/10.1021/acs.langmuir.9b02316
Brushes, graft copolymers, or bottlebrushes? The effect of polymer architecture on the nanotribological properties of grafted-from assemblies
Yan, W., Ramakrishna, S. N., Spencer, N. D., & Benetti, E. M. (2019). Brushes, graft copolymers, or bottlebrushes? The effect of polymer architecture on the nanotribological properties of grafted-from assemblies. Langmuir, 35(35), 11255-11264. https://doi.org/10.1021/acs.langmuir.9b01265
Growing polymer brushes from a variety of substrates under ambient conditions by Cu<sup>0</sup>-mediated surface-initiated ATRP
Yan, W., Fantin, M., Ramakrishna, S. N., Spencer, N., Matyjaszewski, K., & Benetti, E. M. (2019). Growing polymer brushes from a variety of substrates under ambient conditions by Cu0-mediated surface-initiated ATRP. ACS Applied Materials and Interfaces, 11(30), 2470-2477. https://doi.org/10.1021/acsami.9b09529
Translating surface-initiated atom transfer radical polymerization into technology: the mechanism of Cu<sup>0</sup>-mediated SI-ATRP under environmental conditions
Yan, W., Fantin, M., Spencer, N. D., Matyjaszewski, K., & Benetti, E. M. (2019). Translating surface-initiated atom transfer radical polymerization into technology: the mechanism of Cu0-mediated SI-ATRP under environmental conditions. ACS Macro Letters, 8(7), 865-870. https://doi.org/10.1021/acsmacrolett.9b00388