Active Filters

  • (-) Empa Authors = Desing, Harald
  • (-) Keywords ≠ built environment
Search Results 1 - 19 of 19
  • RSS Feed
Select Page
Connecting global sustainability with circular product design
Desing, H. (2024). Connecting global sustainability with circular product design. In G. Brett Melles & C. Wölfel (Eds.), Design science and innovation. Design for a sustainable circular economy. Research and practice consequences (pp. 43-56). https://doi.org/10.1007/978-981-99-7532-7_3
Mobilizing materials to enable a fast energy transition: a conceptual framework
Desing, H., Widmer, R., Bardi, U., Beylot, A., Billy, R. G., Gasser, M., … Wäger, P. (2024). Mobilizing materials to enable a fast energy transition: a conceptual framework. Resources, Conservation and Recycling, 200, 107314 (10 pp.). https://doi.org/10.1016/j.resconrec.2023.107314
Measuring the Doughnut: A good life for all is possible within planetary boundaries
Schlesier, H., Schäfer, M., & Desing, H. (2024). Measuring the Doughnut: A good life for all is possible within planetary boundaries. Journal of Cleaner Production, 448, 141447 (10 pp.). https://doi.org/10.1016/j.jclepro.2024.141447
On circularity, complexity and (elements of) hope
Desing, H., & Blum, N. (2023). On circularity, complexity and (elements of) hope. Circular Economy, 1(1), 1-6. https://doi.org/10.55845/WNHN7338
Below zero
Desing, H. (2022). Below zero. Environmental Science: Advances, 1(5), 612-619. https://doi.org/10.1039/D2VA00168C
How much energy storage can we afford? On the need for a sunflower society, aligning demand with renewable supply
Desing, H., & Widmer, R. (2022). How much energy storage can we afford? On the need for a sunflower society, aligning demand with renewable supply. Biophysical Economics and Sustainability, 7, 3 (15 pp.). https://doi.org/10.1007/s41247-022-00097-y
The 3‐machines energy transition model: exploring the energy frontiers for restoring a habitable climate
Desing, H., Gerber, A., Hischier, R., Wäger, P., & Widmer, R. (2022). The 3‐machines energy transition model: exploring the energy frontiers for restoring a habitable climate. Earth's Future, 10(10), e2022EF002875 (15 pp.). https://doi.org/10.1029/2022EF002875
Resource pressure of carpets: guiding their circular design
Lama, V., Righi, S., Quandt, B. M., Hischier, R., & Desing, H. (2022). Resource pressure of carpets: guiding their circular design. Sustainability, 14(5), 2530 (13 pp.). https://doi.org/10.3390/su14052530
Die Grenzen erneuerbarer Energien
Desing, H. (2021). Die Grenzen erneuerbarer Energien. Volkswirtschaft, 94(10), 41-43.
Product and service design for a sustainable circular economy
Desing, H. (2021). Product and service design for a sustainable circular economy [Doctoral dissertation, ETH Zurich]. https://doi.org/10.3929/ethz-b-000472519
Reducing climate risks with fast and complete energy transitions: applying the precautionary principle to the Paris agreement
Desing, H., & Widmer, R. (2021). Reducing climate risks with fast and complete energy transitions: applying the precautionary principle to the Paris agreement. Environmental Research Letters, 16(12), 121002 (5 pp.). https://doi.org/10.1088/1748-9326/ac36f9
Resource pressure - a circular design method
Desing, H., Braun, G., & Hischier, R. (2021). Resource pressure - a circular design method. Resources, Conservation and Recycling, 164, 105179 (11 pp.). https://doi.org/10.1016/j.resconrec.2020.105179
The resource reduction index - evaluating product design's contribution to a sustainable circular economy
Desing, H., Braun, G., & Hischier, R. (2021). The resource reduction index - evaluating product design's contribution to a sustainable circular economy. In H. Schnitzer & S. Braunegg (Eds.), Proceedings of the 20th EUROPEAN roundtable on sustainable consumption and production (pp. 113-125). https://doi.org/10.3217/978-3-85125-842-4-02
When to replace products with which (circular) strategy? An optimization approach and lifespan indicator
Hummen, T., & Desing, H. (2021). When to replace products with which (circular) strategy? An optimization approach and lifespan indicator. Resources, Conservation and Recycling, 174, 105704 (10 pp.). https://doi.org/10.1016/j.resconrec.2021.105704
How life cycle-based science and practice support the transition towards a sustainable economy
Stucki, M., Jattke, M., Berr, M., Desing, H., Green, A., Hellweg, S., … Keller, R. L. (2021). How life cycle-based science and practice support the transition towards a sustainable economy. International Journal of Life Cycle Assessment, 26, 1062-1069. https://doi.org/10.1007/s11367-021-01894-1
A circular economy within the planetary boundaries: towards a resource-based, systemic approach
Desing, H., Brunner, D., Takacs, F., Nahrath, S., Frankenberger, K., & Hischier, R. (2020). A circular economy within the planetary boundaries: towards a resource-based, systemic approach. Resources, Conservation and Recycling, 155, 104673 (14 pp.). https://doi.org/10.1016/j.resconrec.2019.104673
Ecological resource availability: a method to estimate resource budgets for a sustainable economy
Desing, H., Braun, G., & Hischier, R. (2020). Ecological resource availability: a method to estimate resource budgets for a sustainable economy. Global Sustainability, 3, e31 (11 pp.). https://doi.org/10.1017/sus.2020.26
Ecological resource potential
Desing, H., Braun, G., & Hischier, R. (2020). Ecological resource potential. MethodsX, 7, 101151 (7 pp.). https://doi.org/10.1016/j.mex.2020.101151
Powering a sustainable and circular economy - an engineering approach to estimating renewable energy potentials within earth system boundaries
Desing, H., Widmer, R., Beloin-Saint-Pierre, D., Hischier, R., & Wäger, P. (2019). Powering a sustainable and circular economy - an engineering approach to estimating renewable energy potentials within earth system boundaries. Energies, 12(24), 4723 (18 pp.). https://doi.org/10.3390/en12244723